Determine the length of arc of curve π¦
2 = 2π₯ (πππ 0 β€ π₯ β€
1
2
) in the firstΒ
quadrant.
Determine the length of arc of curve "\ud835\udc66^2 = 2\ud835\udc65" (πππ 0 β€ π₯ β€ 12)
"y=f(x)=\\sqrt{2x} \\newline\ny'=\\sqrt{2}\\frac{1}{2}x^{-\\frac{1}{2}} \\newline\nL(y) = \\int_0^{12}\\sqrt{1+\\frac{1}{2x}}dx=\\frac{1}{2}(ln{5+2\\sqrt{6}}+10\\sqrt{6})=13.3937"
"\\int_0^{12}\\sqrt{1+\\frac{1}{2x}}dx"
apply substitution "u=2x"
"=\\int_0^{24}\\frac{\\sqrt{u+1}}{2\\sqrt{u}}du"
take the constant out "\\int{a f(x)}dx=a\\int{f(x)}dx"
"=\\frac{1}{2}\\int_0^{24}\\frac{\\sqrt{u+1}}{\\sqrt{u}}du"
apply integration by parts "u=\\frac{\\sqrt{u+1}}{\\sqrt{u}}, v'=1"
"=\\frac{1}{2}[\\sqrt{\\frac{u+1}{u}}u-\\int-\\frac{1}{2u^{\\frac{1}{2}}\\sqrt{u+1}}du]_0^{24} \\newline\n\\int-\\frac{1}{2u^{\\frac{1}{2}}\\sqrt{u+1}}du=-ln|\\sqrt{u+1}+\\sqrt{u}| \\newline\n=\\frac{1}{2}[\\sqrt{\\frac{u+1}{u}}u-(-ln|\\sqrt{u+1}+\\sqrt{u}| )]_0^{24}"
Simplify
"=\\frac{1}{2}[\\sqrt{\\frac{u+1}{u}}u+ln|\\sqrt{u+1}+\\sqrt{u}|]_0^{24}"
Compute the boundaries:
"ln(5+2\\sqrt{6}) + 10\\sqrt{6}\\newline\n=\\frac{1}{2}(ln(5+2\\sqrt{6}) + 10\\sqrt{6})=13.3937"
Comments
Leave a comment