Question #180272

Determine the length of arc of curve 𝑦

2 = 2π‘₯ (π‘“π‘œπ‘Ÿ 0 ≀ π‘₯ ≀

1

2

) in the first 

quadrant.


1
Expert's answer
2021-05-07T11:47:51-0400

Determine the length of arc of curve 𝑦2=2π‘₯𝑦^2 = 2π‘₯ (π‘“π‘œπ‘Ÿ 0 ≀ π‘₯ ≀ 12)

y=f(x)=2xyβ€²=212xβˆ’12L(y)=∫0121+12xdx=12(ln5+26+106)=13.3937y=f(x)=\sqrt{2x} \newline y'=\sqrt{2}\frac{1}{2}x^{-\frac{1}{2}} \newline L(y) = \int_0^{12}\sqrt{1+\frac{1}{2x}}dx=\frac{1}{2}(ln{5+2\sqrt{6}}+10\sqrt{6})=13.3937

∫0121+12xdx\int_0^{12}\sqrt{1+\frac{1}{2x}}dx

apply substitution u=2xu=2x

=∫024u+12udu=\int_0^{24}\frac{\sqrt{u+1}}{2\sqrt{u}}du

take the constant out ∫af(x)dx=a∫f(x)dx\int{a f(x)}dx=a\int{f(x)}dx

=12∫024u+1udu=\frac{1}{2}\int_0^{24}\frac{\sqrt{u+1}}{\sqrt{u}}du

apply integration by parts u=u+1u,vβ€²=1u=\frac{\sqrt{u+1}}{\sqrt{u}}, v'=1

=12[u+1uuβˆ’βˆ«βˆ’12u12u+1du]024βˆ«βˆ’12u12u+1du=βˆ’ln∣u+1+u∣=12[u+1uuβˆ’(βˆ’ln∣u+1+u∣)]024=\frac{1}{2}[\sqrt{\frac{u+1}{u}}u-\int-\frac{1}{2u^{\frac{1}{2}}\sqrt{u+1}}du]_0^{24} \newline \int-\frac{1}{2u^{\frac{1}{2}}\sqrt{u+1}}du=-ln|\sqrt{u+1}+\sqrt{u}| \newline =\frac{1}{2}[\sqrt{\frac{u+1}{u}}u-(-ln|\sqrt{u+1}+\sqrt{u}| )]_0^{24}

Simplify

=12[u+1uu+ln∣u+1+u∣]024=\frac{1}{2}[\sqrt{\frac{u+1}{u}}u+ln|\sqrt{u+1}+\sqrt{u}|]_0^{24}

Compute the boundaries:

ln(5+26)+106=12(ln(5+26)+106)=13.3937ln(5+2\sqrt{6}) + 10\sqrt{6}\newline =\frac{1}{2}(ln(5+2\sqrt{6}) + 10\sqrt{6})=13.3937


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS