Determine the length of arc of curve y2=2x (πππ 0 β€ π₯ β€ 12)
y=f(x)=2xβyβ²=2β21βxβ21βL(y)=β«012β1+2x1ββdx=21β(ln5+26β+106β)=13.3937
β«012β1+2x1ββdx
apply substitution u=2x
=β«024β2uβu+1ββdu
take the constant out β«af(x)dx=aβ«f(x)dx
=21ββ«024βuβu+1ββdu
apply integration by parts u=uβu+1ββ,vβ²=1
=21β[uu+1ββuββ«β2u21βu+1β1βdu]024ββ«β2u21βu+1β1βdu=βlnβ£u+1β+uββ£=21β[uu+1ββuβ(βlnβ£u+1β+uββ£)]024β
Simplify
=21β[uu+1ββu+lnβ£u+1β+uββ£]024β
Compute the boundaries:
ln(5+26β)+106β=21β(ln(5+26β)+106β)=13.3937
Comments