Integration Procedures (Integration by Parts)
∫csc^(-2)x dx
I=∫csc−2xdx=∫sin2xdx=−cosxsinx−I=\int{csc^{-2}x}dx=\int{sin^2x dx}=-\cos{x}\sin{x}-I=∫csc−2xdx=∫sin2xdx=−cosxsinx−
−∫(−cosx)cosxdx=-\int{(-\cos{x})\cos{x}dx}=−∫(−cosx)cosxdx=
=−cosxsinx+∫cos2xdx==-\cos{x}\sin{x}+\int{\cos^2{x}dx}==−cosxsinx+∫cos2xdx=
=−cosxsinx+∫(1−sin2x)dx==-\cos{x}\sin{x}+\int{(1-\sin^2{x})dx}==−cosxsinx+∫(1−sin2x)dx=
=−cosxsinx+x−∫sin2xdx==-\cos{x}\sin{x}+x-\int{\sin^2{x}dx}==−cosxsinx+x−∫sin2xdx=
=−cosxsinx+x−I=-\cos{x}\sin{x}+x-I=−cosxsinx+x−I
2I=−cosxsinx+x2I=-\cos{x}\sin{x}+x2I=−cosxsinx+x
I=12(x−cosxsinx)I=\frac{1}{2}(x-\cos{x}\sin{x})I=21(x−cosxsinx)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment