Integration Procedures (Integration by Parts)
∫ x³ cos 5x dx
Part 1
dv=cos(5x)dx
u=x3
du=3x2dx
v=1/5 sin(5x)
"\\smallint{udv}=uv-\\smallint{vdu}"
"\\smallint{{x^3}cos(5x)}dx=1\/5x^3sin(5x)dx-3\/5\\int{x^2sin(5x)}dx"
Part 2
dv=sin(5x)dx
u=x2
du=2xdx
v=-1/5 cos(5x)
"\\smallint{{x^2}sin(5x)}dx=-1\/5x^2cos(5x)+2\/5\\int{xcos(5x)}dx"
Part 3
dv=cos(5x)dx
u=x
du=dx
v=1/5 sin(5x)
"\\smallint{{x}cos(5x)}dx=-1\/5xsin(5x)-1\/5\\int{sin(5x)}dx=1\/5xsin(5x)+1\/25cos(5x)+C"
Total
"\\smallint{{x^3}cos(5x)}dx=1\/5x^3sin(5x)-3\/5(-1\/5x^2cos(5x)+2\/5(1\/5xsin(5x)+1\/25cos(5x)+C))=1\/5x^3sin(5x)+3\/25x^2cos(5x)-6\/125xsin(5x)-12\/625cos(5x)+C"
Comments
Leave a comment