Part 1
dv=cos(5x)dx
u=x3
du=3x2dx
v=1/5 sin(5x)
∫udv=uv−∫vdu
∫x3cos(5x)dx=1/5x3sin(5x)dx−3/5∫x2sin(5x)dx
Part 2
dv=sin(5x)dx
u=x2
du=2xdx
v=-1/5 cos(5x)
∫x2sin(5x)dx=−1/5x2cos(5x)+2/5∫xcos(5x)dx
Part 3
dv=cos(5x)dx
u=x
du=dx
v=1/5 sin(5x)
∫xcos(5x)dx=−1/5xsin(5x)−1/5∫sin(5x)dx=1/5xsin(5x)+1/25cos(5x)+C
Total
∫x3cos(5x)dx=1/5x3sin(5x)−3/5(−1/5x2cos(5x)+2/5(1/5xsin(5x)+1/25cos(5x)+C))=1/5x3sin(5x)+3/25x2cos(5x)−6/125xsin(5x)−12/625cos(5x)+C
Comments