determine the points of discontinuity of the dunction and the nature of discontinuity at each of these points f(x)={-x^2 when x<=0; 4-5x when 0<x<=1; 3x-4x^2 when 1<x<2; -12x+2x when x>2, also check whether function is drivable at x=1Β
Let us determine the points of discontinuity of the function "f" and the nature of discontinuity at each of these points.
The function "f" is continuous on the open intervals "(-\\infty, 0),\\ (0,1), \\ (1,2)" and "(2,+\\infty)" because it coinΡides with polynomial functions on these intervals.
Since "\\lim\\limits_{x\\to 0-}f(x)=\\lim\\limits_{x\\to 0-}(-x^2)=0=f(0)" and "\\lim\\limits_{x\\to 0+}f(x)=\\lim\\limits_{x\\to 0+}(4-5x)=4\\ne \\lim\\limits_{x\\to 0-}f(x)", we conclude that "x=0" is a point of non-removable discontinuity.
Since "\\lim\\limits_{x\\to 1-}f(x)=\\lim\\limits_{x\\to 1-}(4-5x)=-1=f(1)" and "\\lim\\limits_{x\\to 1+}f(x)=\\lim\\limits_{x\\to 1+}(3x-4x^2)=-1= f(1)", we conclude that the function "f" is continuous at the point "x=1".
Since "\\lim\\limits_{x\\to 2-}f(x)=\\lim\\limits_{x\\to 2-}(3x-4x^2)=-10=f(2)" and "\\lim\\limits_{x\\to 2+}f(x)=\\lim\\limits_{x\\to 2+}(-12x+2x)=-20\\ne \\lim\\limits_{x\\to 2-}f(x)", we conclude that "x=2" is a point of non-removable discontinuity.
Let us check whether function is differentiable at "x=1."
Since "\\lim\\limits_{x\\to 1-}\\frac{f(x)-f(1)}{x-1}=\\lim\\limits_{x\\to 1-}\\frac{4-5x+1}{x-1}=\n\\lim\\limits_{x\\to 1-}\\frac{-5(x-1)}{x-1}=-5" and "\\lim\\limits_{x\\to 1+}\\frac{f(x)-f(1)}{x-1}=\\lim\\limits_{x\\to 1+}\\frac{3x-4x^2+1}{x-1}=\n\\lim\\limits_{x\\to 1+}\\frac{(x-1)(-1-4x)}{x-1}=\\lim\\limits_{x\\to 1+}(-1-4x)=-5", we conclude that the function "f" is differentiable at "x=1."
Comments
Leave a comment