Question #177966

determine the points of discontinuity of the dunction and the nature of discontinuity at each of these points f(x)={-x^2 when x<=0; 4-5x when 0<x<=1; 3x-4x^2 when 1<x<2; -12x+2x when x>2, also check whether function is drivable at x=1 


1
Expert's answer
2021-04-13T13:35:12-0400

Let us determine the points of discontinuity of the function ff and the nature of discontinuity at each of these points.

f(x)={x2,  x0;45x,  0<x1;3x4x2,  1<x2;12x+2x,  x>2.f(x)=\begin{cases}-x^2,\ \ x\le 0; \\4-5x,\ \ 0<x\le1; \\3x-4x^2,\ \ 1<x\le2; \\-12x+2x,\ \ x>2. \end{cases}

The function ff is continuous on the open intervals (,0), (0,1), (1,2)(-\infty, 0),\ (0,1), \ (1,2) and (2,+)(2,+\infty) because it coinсides with polynomial functions on these intervals.


Since limx0f(x)=limx0(x2)=0=f(0)\lim\limits_{x\to 0-}f(x)=\lim\limits_{x\to 0-}(-x^2)=0=f(0) and limx0+f(x)=limx0+(45x)=4limx0f(x)\lim\limits_{x\to 0+}f(x)=\lim\limits_{x\to 0+}(4-5x)=4\ne \lim\limits_{x\to 0-}f(x), we conclude that x=0x=0 is a point of non-removable discontinuity.


Since limx1f(x)=limx1(45x)=1=f(1)\lim\limits_{x\to 1-}f(x)=\lim\limits_{x\to 1-}(4-5x)=-1=f(1) and limx1+f(x)=limx1+(3x4x2)=1=f(1)\lim\limits_{x\to 1+}f(x)=\lim\limits_{x\to 1+}(3x-4x^2)=-1= f(1), we conclude that the function ff is continuous at the point x=1x=1.


Since limx2f(x)=limx2(3x4x2)=10=f(2)\lim\limits_{x\to 2-}f(x)=\lim\limits_{x\to 2-}(3x-4x^2)=-10=f(2) and limx2+f(x)=limx2+(12x+2x)=20limx2f(x)\lim\limits_{x\to 2+}f(x)=\lim\limits_{x\to 2+}(-12x+2x)=-20\ne \lim\limits_{x\to 2-}f(x), we conclude that x=2x=2 is a point of non-removable discontinuity.


Let us check whether function is differentiable at x=1.x=1.

Since limx1f(x)f(1)x1=limx145x+1x1=limx15(x1)x1=5\lim\limits_{x\to 1-}\frac{f(x)-f(1)}{x-1}=\lim\limits_{x\to 1-}\frac{4-5x+1}{x-1}= \lim\limits_{x\to 1-}\frac{-5(x-1)}{x-1}=-5 and limx1+f(x)f(1)x1=limx1+3x4x2+1x1=limx1+(x1)(14x)x1=limx1+(14x)=5\lim\limits_{x\to 1+}\frac{f(x)-f(1)}{x-1}=\lim\limits_{x\to 1+}\frac{3x-4x^2+1}{x-1}= \lim\limits_{x\to 1+}\frac{(x-1)(-1-4x)}{x-1}=\lim\limits_{x\to 1+}(-1-4x)=-5, we conclude that the function ff is differentiable at x=1.x=1.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS