we evaluate the integral
∫0738−x2x3dx
letting u=8−x3...(i)
then du=−2xdx or2−1du=xdx...(ii)
for the limits; when x=0,u=8...(iii),x=7,u=1...(iv)
∴∫0738−x2dxx3=∫0738−x2x2xdx
=2−1∫813u(8−u)du from (i) and (iv)
=2−1∫81(8u−1/3−u2/3)du
=2−1[12u2/3−53u5/3]81
=2−1[557−5144]=1087=8.7
Comments