we evaluate the integral
∫ 0 7 x 3 8 − x 2 3 d x \int^{\sqrt7}_{0} \frac {x^3}{\sqrt[3]{8-x^2}}dx ∫ 0 7 3 8 − x 2 x 3 d x
letting u = 8 − x 3 . . . ( i ) u=8-x^3 ...(i) u = 8 − x 3 ... ( i )
then d u = − 2 x d x du= -2xdx d u = − 2 x d x or− 1 2 d u = x d x . . . ( i i ) \frac {-1}{2}du=xdx ...(ii) 2 − 1 d u = x d x ... ( ii )
for the limits; when x = 0 , u = 8... ( i i i ) , x = 7 , u = 1... ( i v ) x=0, u= 8 ...(iii),
x=\sqrt{7}, u=1 ...(iv) x = 0 , u = 8... ( iii ) , x = 7 , u = 1... ( i v )
∴ ∫ 0 7 x 3 8 − x 2 3 d x = ∫ 0 7 x 2 8 − x 2 3 x d x \therefore \int^{\sqrt7}_{0} \frac{x^3}{\sqrt[3]{8-x^2}dx}=\int^{\sqrt7}_{0} \frac{x^2}{\sqrt[3]{8-x^2}}xdx ∴ ∫ 0 7 3 8 − x 2 d x x 3 = ∫ 0 7 3 8 − x 2 x 2 x d x
= − 1 2 ∫ 8 1 ( 8 − u ) u 3 d u =\frac{-1}{2}\int^{1}_{8}\frac{(8-u)}{\sqrt[3]u}du = 2 − 1 ∫ 8 1 3 u ( 8 − u ) d u from (i) and (iv)
= − 1 2 ∫ 8 1 ( 8 u − 1 / 3 − u 2 / 3 ) d u =\frac{-1}{2}\int^{1}_{8} (8u^{-1/3}-u^{2/3})du = 2 − 1 ∫ 8 1 ( 8 u − 1/3 − u 2/3 ) d u
= − 1 2 [ 12 u 2 / 3 − 3 5 u 5 / 3 ] 8 1 =\frac{-1}{2}[12u^{2/3}-\frac{3}{5}u^{5/3}]^{1}_{8} = 2 − 1 [ 12 u 2/3 − 5 3 u 5/3 ] 8 1
= − 1 2 [ 57 5 − 144 5 ] = 87 10 = 8.7 =\frac {-1}{2} [\frac{57}{5}-\frac{144}{5}]=\frac{87}{10}=8.7 = 2 − 1 [ 5 57 − 5 144 ] = 10 87 = 8.7
Comments