Question #178345

Integration Procedures(Itevrations by Parts)


∫ x³dx/cuberoot of (8-x²) from 0 to √7


1
Expert's answer
2021-04-26T17:40:33-0400


we evaluate the integral

07x38x23dx\int^{\sqrt7}_{0} \frac {x^3}{\sqrt[3]{8-x^2}}dx

letting u=8x3...(i)u=8-x^3 ...(i)

then du=2xdxdu= -2xdx or12du=xdx...(ii)\frac {-1}{2}du=xdx ...(ii)

for the limits; when x=0,u=8...(iii),x=7,u=1...(iv)x=0, u= 8 ...(iii), x=\sqrt{7}, u=1 ...(iv)

07x38x23dx=07x28x23xdx\therefore \int^{\sqrt7}_{0} \frac{x^3}{\sqrt[3]{8-x^2}dx}=\int^{\sqrt7}_{0} \frac{x^2}{\sqrt[3]{8-x^2}}xdx

=1281(8u)u3du=\frac{-1}{2}\int^{1}_{8}\frac{(8-u)}{\sqrt[3]u}du from (i) and (iv)

=1281(8u1/3u2/3)du=\frac{-1}{2}\int^{1}_{8} (8u^{-1/3}-u^{2/3})du

=12[12u2/335u5/3]81=\frac{-1}{2}[12u^{2/3}-\frac{3}{5}u^{5/3}]^{1}_{8}

=12[5751445]=8710=8.7=\frac {-1}{2} [\frac{57}{5}-\frac{144}{5}]=\frac{87}{10}=8.7









Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS