Integration Procedures(Itevrations by Parts)
∫ x³dx/cuberoot of (8-x²) from 0 to √7
we evaluate the integral
"\\int^{\\sqrt7}_{0} \\frac {x^3}{\\sqrt[3]{8-x^2}}dx"
letting "u=8-x^3 ...(i)"
then "du= -2xdx" or"\\frac {-1}{2}du=xdx ...(ii)"
for the limits; when "x=0, u= 8 ...(iii), \nx=\\sqrt{7}, u=1 ...(iv)"
"\\therefore \\int^{\\sqrt7}_{0} \\frac{x^3}{\\sqrt[3]{8-x^2}dx}=\\int^{\\sqrt7}_{0} \\frac{x^2}{\\sqrt[3]{8-x^2}}xdx"
"=\\frac{-1}{2}\\int^{1}_{8}\\frac{(8-u)}{\\sqrt[3]u}du" from (i) and (iv)
"=\\frac{-1}{2}\\int^{1}_{8} (8u^{-1\/3}-u^{2\/3})du"
"=\\frac{-1}{2}[12u^{2\/3}-\\frac{3}{5}u^{5\/3}]^{1}_{8}"
"=\\frac {-1}{2} [\\frac{57}{5}-\\frac{144}{5}]=\\frac{87}{10}=8.7"
Comments
Leave a comment