Answer to Question #177792 in Calculus for John green

Question #177792

For the function f(x)=x3-6x2-12 determine


a) intervals of increase and decrease


b) location of max and minimum points


c) interval of concavity down or up


d) locator of points of inflection


1
Expert's answer
2021-04-15T07:21:12-0400

To solve the items find previously first and second derivatives of given function

f(x)=x36x212f(x)=x^3-6x^2-12


f(x)=3x262x0=3x212xf'(x)=3x^2-6\cdot2x-0=3x^2-12x

f(x)=32x12=6x12f''(x)=3\cdot2x-12=6x-12


a) intervals of increase and decrease

Find intervals of increase solving the inequality

f(x)>0f'(x)>0

3x212x>03x^2-12x>0

3x(x4)>03x(x-4)>0

{3>0x(x4)>0\left\{\begin{array}{l}3>0\\ x(x-4)>0\end{array}\right.\Rightarrow x(x4)>0x(x-4)>0\Rightarrow


[{x>0x4>0{x<0x4<0\left[\begin{array}{l}\left\{\begin{array}{l}x>0\\x-4>0\end{array}\right.\\ \\ \left\{\begin{array}{l}x<0\\x-4<0\end{array}\right.\end{array}\right.\Rightarrow [{x>0x>4{x<0x<4\left[\begin{array}{l}\left\{\begin{array}{l}x>0\\x>4\end{array}\right.\\ \\ \left\{\begin{array}{l}x<0\\x<4\end{array}\right.\end{array}\right.\Rightarrow [x>4x<0\left[\begin{array}{l}x>4 \\ x<0\end{array}\right.\Rightarrow x(;0)(4;+)x\in(-\infty;0)\cup(4;+\infty)

Find intervals of decrease solving the inequality

f(x)<0f'(x)<0

3x212x<03x^2-12x<0

3x(x4)<03x(x-4)<0

{3>0x(x4)<0\left\{\begin{array}{l}3>0\\ x(x-4)<0\end{array}\right.\Rightarrow x(x4)<0x(x-4)<0\Rightarrow


[{x>0x4<0{x<0x4>0\left[\begin{array}{l}\left\{\begin{array}{l}x>0\\x-4<0\end{array}\right.\\ \\ \left\{\begin{array}{l}x<0\\x-4>0\end{array}\right.\end{array}\right.\Rightarrow [{x>0x<4{x<0x>4\left[\begin{array}{l}\left\{\begin{array}{l}x>0\\x<4\end{array}\right.\\ \\ \left\{\begin{array}{l}x<0\\x>4\end{array}\right.\end{array}\right.\Rightarrow [0<x<4x\left[\begin{array}{l}0<x<4 \\ x\in\emptyset\end{array}\right.\Rightarrow x(0;4)x\in(0;4)



b) location of maximum and minimum points

Find critical points solving the equation

f(x)=0f'(x)=0

3x212x=03x^2-12x=0

3x(x4)=03x(x-4)=0

[x=0x=4\left[\begin{array}{l}x=0 \\ x=4\end{array}\right.

At the point x1=0x_1=0 the derivative swithes its sign from ++ to - . Hence the function switches from increasing to decreasing at the point. Thus x1=0x_1=0 is the maximum point.

f(0)=12f(0)=12

At the point x2=4x_2=4 the derivative swithes its sign from - to ++ . Hence the function switches from decreasing to increasing at the point. Thus x2=4x_2=4 is the minimum point.

f(4)=4364212=649612=44f(4)=4^3-6\cdot4^2-12=64-96-12=-44


c) intervals of concavity down or up

Find intervals of concavity down solving the inequality

f(x)>0f''(x)>0

6x12>06x-12>0

6(x2)>06(x-2)>0

{6>0x2>0\left\{\begin{array}{l}6>0\\ x-2>0\end{array}\right.\Rightarrow x>2x>2\Rightarrow x(2;+)x\in(2;+\infty)


Find intervals of concavity up solving the inequality

f(x)<0f''(x)<0

6x12<06x-12<0

6(x2)<06(x-2)<0

{6>0x2<0\left\{\begin{array}{l}6>0\\ x-2<0\end{array}\right.\Rightarrow x<2x<2\Rightarrow x(;2)x\in(-\infty;2)


d) locator of points of inflection

Find points of inflection solving the equation

f(x)=0f''(x)=0

6x12=06x-12=0

6(x2)=06(x-2)=0

x=2x=2

At the point x=2x=2 the second derivative swithes its sign from - to ++ . Hence the graph of function switches from concavity up to concavity down at the point. Thus x=2x=2 is the inflection point.

f(2)=2362212=82412=28f(2)=2^3-6\cdot2^2-12=8-24-12=-28



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment