Question #178216

Use logarithmic differentiation to find 𝑓 ′ (𝑥) for 𝑓(𝑥) = (𝑥^2−1)(𝑥 2−2)(x^2−3) / (𝑥^2+1)(𝑥^2+2)(𝑥^2+3) . Then, find 𝑓 ′ (2) and 𝑓 ′ (1).


1
Expert's answer
2021-04-15T07:33:59-0400

We have given that


f(x)=(𝑥21)(𝑥22)(x23)(𝑥2+1)(𝑥2+2)(𝑥2+3)f(x) = \dfrac{(𝑥^2−1)(𝑥^2−2)(x^2−3)}{(𝑥^2+1)(𝑥^2+2)(𝑥^2+3)}


Taking log on both sides


logf(x)=log[(x21)(x22)(x23)]log[(x2+1)(x2+2)(x2+3)]log{f(x)} = log[(x^2-1)(x^2-2)(x^2-3)]-log[(x^2+1)(x^2+2)(x^2+3)]


logf(x)=log(x21)+log(x22)+log(x23)log(x2+1)log(x2+2)log(x2+3)log{f(x)} = log(x^2-1)+log(x^2-2)+log(x^2-3)-log(x^2+1)-log(x^2+2)-log(x^2+3)


Differentiating both sides w.r.t 'x'


1f(x)f(x)=2xx21+2xx22+2xx232xx2+12xx2+22xx2+3\dfrac{1}{f(x)}f'(x) = \dfrac{2x}{x^2-1}+\dfrac{2x}{x^2-2}+ \dfrac{2x}{x^2-3}- \dfrac{2x}{x^2+1}- \dfrac{2x}{x^2+2}- \dfrac{2x}{x^2+3}


f(x)=f(x)[2xx21+2xx22+2xx232xx2+12xx2+22xx2+3]f'(x) =f(x)[ \dfrac{2x}{x^2-1}+\dfrac{2x}{x^2-2}+ \dfrac{2x}{x^2-3}- \dfrac{2x}{x^2+1}- \dfrac{2x}{x^2+2}- \dfrac{2x}{x^2+3}]


f(x)=(𝑥21)(𝑥22)(x23)(𝑥2+1)(𝑥2+2)(𝑥2+3)[2xx21+2xx22+2xx232xx2+12xx2+22xx2+3]f'(x) =\dfrac{(𝑥^2−1)(𝑥^2−2)(x^2−3)}{(𝑥^2+1)(𝑥^2+2)(𝑥^2+3)}[ \dfrac{2x}{x^2-1}+\dfrac{2x}{x^2-2}+ \dfrac{2x}{x^2-3}- \dfrac{2x}{x^2+1}- \dfrac{2x}{x^2+2}- \dfrac{2x}{x^2+3}]



f(x)=1(𝑥2+1)(𝑥2+2)(𝑥2+3)[2x(x22)(x23)+2x(x21)(x23)+2x(x21)(x22)2x(𝑥21)(𝑥22)(x23)x2+12x(𝑥21)(𝑥22)(x23)x2+22x(𝑥21)(𝑥22)(x23)x2+3]f'(x) =\dfrac{1}{(𝑥^2+1)(𝑥^2+2)(𝑥^2+3)}[ {2x(x^2-2)(x^2-3)}+{2x(x^2-1)(x^2-3)}+ {2x(x^2-1)(x^2-2)}- \dfrac{2x{(𝑥^2−1)(𝑥^2−2)(x^2−3)}}{x^2+1}- \dfrac{2x{(𝑥^2−1)(𝑥^2−2)(x^2−3)}}{x^2+2}- \dfrac{2x{(𝑥^2−1)(𝑥^2−2)(x^2−3)}}{x^2+3}]




f(1)=1(12+1)(12+2)(12+3)[2(1)(122)(123)+2(1)(121)(x23)+2(1)(121)(122)2(1)(121)(122)(123)12+12(1)(121)(122)(123)12+22(1)(121)(122)(123)12+3]f'(1) =\dfrac{1}{(1^2+1)(1^2+2)(1^2+3)}[ {2(1)(1^2-2)(1^2-3)}+{2(1)(1^2-1)(x^2-3)}+ {2(1)(1^2-1)(1^2-2)}- \dfrac{2(1){(1^2−1)(1^2−2)(1^2−3)}}{1^2+1}- \dfrac{2(1){(1^2−1)(1^2−2)(1^2−3)}}{1^2+2}- \dfrac{2(1){(1^2−1)(1^2−2)(1^2−3)}}{1^2+3}]


Hence, f(1)=16f'(1) = \dfrac{1}{6}



f(x)=1(22+1)(22+2)(22+3)[2(2)(222)(223)+2(2)(221)(223)+2(2)(221)(222)2(2)(221)(222)(223)22+12(2)(221)(222)(223)22+22(2)(221)(222)(223)22+3]f'(x) =\dfrac{1}{(2^2+1)(2^2+2)(2^2+3)}[ {2(2)(2^2-2)(2^2-3)}+{2(2)(2^2-1)(2^2-3)}+ {2(2)(2^2-1)(2^2-2)}- \dfrac{2(2){(2^2−1)(2^2−2)(2^2−3)}}{2^2+1}- \dfrac{2(2){(2^2−1)(2^2−2)(2^2−3)}}{2^2+2}- \dfrac{2(2){(2^2−1)(2^2−2)(2^2−3)}}{2^2+3}]


Hence, f(2)=4055235f'(2) = 40-\dfrac{552}{35}


f(2)=8487350f'(2) = \dfrac{848}{7350}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS