We have given that
f(x)=(x2+1)(x2+2)(x2+3)(x2−1)(x2−2)(x2−3)
Taking log on both sides
logf(x)=log[(x2−1)(x2−2)(x2−3)]−log[(x2+1)(x2+2)(x2+3)]
logf(x)=log(x2−1)+log(x2−2)+log(x2−3)−log(x2+1)−log(x2+2)−log(x2+3)
Differentiating both sides w.r.t 'x'
f(x)1f′(x)=x2−12x+x2−22x+x2−32x−x2+12x−x2+22x−x2+32x
f′(x)=f(x)[x2−12x+x2−22x+x2−32x−x2+12x−x2+22x−x2+32x]
f′(x)=(x2+1)(x2+2)(x2+3)(x2−1)(x2−2)(x2−3)[x2−12x+x2−22x+x2−32x−x2+12x−x2+22x−x2+32x]
f′(x)=(x2+1)(x2+2)(x2+3)1[2x(x2−2)(x2−3)+2x(x2−1)(x2−3)+2x(x2−1)(x2−2)−x2+12x(x2−1)(x2−2)(x2−3)−x2+22x(x2−1)(x2−2)(x2−3)−x2+32x(x2−1)(x2−2)(x2−3)]
f′(1)=(12+1)(12+2)(12+3)1[2(1)(12−2)(12−3)+2(1)(12−1)(x2−3)+2(1)(12−1)(12−2)−12+12(1)(12−1)(12−2)(12−3)−12+22(1)(12−1)(12−2)(12−3)−12+32(1)(12−1)(12−2)(12−3)]
Hence, f′(1)=61
f′(x)=(22+1)(22+2)(22+3)1[2(2)(22−2)(22−3)+2(2)(22−1)(22−3)+2(2)(22−1)(22−2)−22+12(2)(22−1)(22−2)(22−3)−22+22(2)(22−1)(22−2)(22−3)−22+32(2)(22−1)(22−2)(22−3)]
Hence, f′(2)=40−35552
f′(2)=7350848
Comments