The basic formula is
∫u dv=uv−∫v du
The formula may be applied again if necessary
∫x3cos5x dx=
denote u=x3 and dv=cos5x dx
then du=3x2dx and v=51sin5x
x3⋅51sin5x−∫51sin5x⋅3x2dx=
simplify
51x3sin5x−53∫sin5x⋅x2dx=
51x3sin5x−53∫x2⋅sin5xdx=
integate by parts again
denote u=x2 and dv=sin5x dx
then du=2xdx and v=−51cos5x
51x3sin5x−53(x2⋅(−51cos5x)−∫(−51cos5x)⋅2xdx)=
51x3sin5x−53(−51x2cos5x+52∫cos5x⋅xdx)=
51x3sin5x+253x2cos5x−256∫x⋅cos5xdx=
integrate by parts again
denote u=x and dv=cos5x dx
then du=dx and v=51sin5x
51x3sin5x+253x2cos5x−256(x⋅51sin5x−∫51sin5x⋅dx)=
51x3sin5x+253x2cos5x−256(51xsin5x−51∫sin5x dx)=
51x3sin5x+253x2cos5x−1256xsin5x+1256∫sin5x dx=
51x3sin5x+253x2cos5x−1256xsin5x+1256(−51cos5x)+c=
51x3sin5x+253x2cos5x−1256xsin5x−6256cos5x+c
Comments