Question #178348

Integration Procedures(Itevrations by Parts)


∫ x³ cos 5x dx


1
Expert's answer
2021-04-15T07:27:13-0400

The basic formula is


u dv=uvv du\displaystyle\int u\ dv=uv-\int v\ du


The formula may be applied again if necessary


x3cos5x dx=\displaystyle\int x^3 \cos 5x\ dx=

denote u=x3u=x^3 and dv=cos5x dxdv=\cos 5x\ dx

then du=3x2dxdu=3x^2 dx and v=15sin5xv=\dfrac{1}{5}\sin5x


x315sin5x15sin5x3x2dx=\displaystyle x^3\cdot\dfrac{1}{5}\sin5x-\int \dfrac{1}{5}\sin5x\cdot3x^2 dx=

simplify

15x3sin5x35sin5xx2dx=\displaystyle \dfrac{1}{5}x^3\sin5x-\dfrac{3}{5}\int \sin5x\cdot x^2 dx=

15x3sin5x35x2sin5xdx=\displaystyle \dfrac{1}{5}x^3\sin5x-\dfrac{3}{5}\int x^2\cdot\sin5x dx=

integate by parts again

denote u=x2u=x^2 and dv=sin5x dxdv=\sin5x\ dx

then du=2xdxdu=2x dx and v=15cos5xv=-\dfrac{1}{5}\cos5x


15x3sin5x35(x2(15cos5x)(15cos5x)2xdx)=\displaystyle \dfrac{1}{5}x^3\sin5x-\dfrac{3}{5}\left(x^2\cdot\left(-\dfrac{1}{5}\cos5x\right)-\int \left(-\dfrac{1}{5}\cos5x\right)\cdot2x dx\right)=


15x3sin5x35(15x2cos5x+25cos5xxdx)=\displaystyle \dfrac{1}{5}x^3\sin5x-\dfrac{3}{5}\left(-\dfrac{1}{5}x^2\cos5x+\dfrac{2}{5}\int \cos5x\cdot x dx\right)=


15x3sin5x+325x2cos5x625xcos5xdx=\displaystyle \dfrac{1}{5}x^3\sin5x+\dfrac{3}{25}x^2\cos5x-\dfrac{6}{25}\int x\cdot\cos5x dx=


integrate by parts again

denote u=xu=x and dv=cos5x dxdv=\cos 5x\ dx

then du=dxdu=dx and v=15sin5xv=\dfrac{1}{5}\sin5x


15x3sin5x+325x2cos5x625(x15sin5x15sin5xdx)=\displaystyle \dfrac{1}{5}x^3\sin5x+\dfrac{3}{25}x^2\cos5x-\dfrac{6}{25}\left(x\cdot\dfrac{1}{5}\sin5x-\int \dfrac{1}{5}\sin5x\cdot dx\right)=


15x3sin5x+325x2cos5x625(15xsin5x15sin5x dx)=\displaystyle \dfrac{1}{5}x^3\sin5x+\dfrac{3}{25}x^2\cos5x-\dfrac{6}{25}\left(\dfrac{1}{5}x\sin5x- \dfrac{1}{5}\int\sin5x\ dx\right)=


15x3sin5x+325x2cos5x6125xsin5x+6125sin5x dx=\displaystyle \dfrac{1}{5}x^3\sin5x+\dfrac{3}{25}x^2\cos5x-\dfrac{6}{125}x\sin5x+\dfrac{6}{125}\int\sin5x\ dx=


15x3sin5x+325x2cos5x6125xsin5x+6125(15cos5x)+c=\displaystyle \dfrac{1}{5}x^3\sin5x+\dfrac{3}{25}x^2\cos5x-\dfrac{6}{125}x\sin5x+\dfrac{6}{125}\left(-\dfrac{1}{5}\cos5x\right)+c=


15x3sin5x+325x2cos5x6125xsin5x6625cos5x+c\displaystyle \dfrac{1}{5}x^3\sin5x+\dfrac{3}{25}x^2\cos5x-\dfrac{6}{125}x\sin5x-\dfrac{6}{625}\cos5x+c




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS