Integration Procedures (Integration by Parts)
∫ x³dx/cuberoot of (8-x²) from 0 to √7
Integration Procedures (Integration by Parts)
∫ x³dx/cuberoot of (8-x²) from 0 to √7
Solution:
"I=\\int_0^{\\sqrt7}\\frac{x^3}{\\sqrt[3]{8-x^2}}dx=\\frac12\\int_0^{\\sqrt7}\\frac{x^2}{\\sqrt[3]{8-x^2}}dx^2" "=\\frac12\\int_0^{7}\\frac{t}{\\sqrt[3]{8-t}}dt"
Integration by parts:
"u=t" ; "du=dt" ;
"dv=\\frac{dt}{\\sqrt[3]{8-t}}" ; "v=-\\frac32(8-t)^{\\frac23}" .
"I=-\\frac34\\cdot t(8-t)^{\\frac23}|_0^7+\\frac12\\int_0^7\\frac32(8-t)^{\\frac23}dt=-\\frac34\\cdot7-" "\\frac34\\cdot\\frac35(8-t)^{\\frac53}|_0^7=-\\frac{21}{4}-\\frac{9}{20}+\\frac{9\\cdot2^5}{20}=\\frac{87}{10}=8.7"
Answer: "\\int_0^{\\sqrt7}\\frac{x^3}{\\sqrt[3]{8-x^2}}dx=8.7" .
Comments
Leave a comment