Question #178351

Integration Procedures (Integration by Parts)


∫ x³dx/cuberoot of (8-x²) from 0 to √7


1
Expert's answer
2021-04-13T23:57:29-0400

Integration Procedures (Integration by Parts)


∫ x³dx/cuberoot of (8-x²) from 0 to √7

Solution:

I=07x38x23dx=1207x28x23dx2I=\int_0^{\sqrt7}\frac{x^3}{\sqrt[3]{8-x^2}}dx=\frac12\int_0^{\sqrt7}\frac{x^2}{\sqrt[3]{8-x^2}}dx^2 =1207t8t3dt=\frac12\int_0^{7}\frac{t}{\sqrt[3]{8-t}}dt

Integration by parts:

u=tu=t ; du=dtdu=dt ;

dv=dt8t3dv=\frac{dt}{\sqrt[3]{8-t}} ; v=32(8t)23v=-\frac32(8-t)^{\frac23} .

I=34t(8t)2307+120732(8t)23dt=347I=-\frac34\cdot t(8-t)^{\frac23}|_0^7+\frac12\int_0^7\frac32(8-t)^{\frac23}dt=-\frac34\cdot7- 3435(8t)5307=214920+92520=8710=8.7\frac34\cdot\frac35(8-t)^{\frac53}|_0^7=-\frac{21}{4}-\frac{9}{20}+\frac{9\cdot2^5}{20}=\frac{87}{10}=8.7

Answer: 07x38x23dx=8.7\int_0^{\sqrt7}\frac{x^3}{\sqrt[3]{8-x^2}}dx=8.7 .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS