Integration Procedures (Integration by Parts)
∫ x³dx/cuberoot of (8-x²) from 0 to √7
Solution:
I = ∫ 0 7 x 3 8 − x 2 3 d x = 1 2 ∫ 0 7 x 2 8 − x 2 3 d x 2 I=\int_0^{\sqrt7}\frac{x^3}{\sqrt[3]{8-x^2}}dx=\frac12\int_0^{\sqrt7}\frac{x^2}{\sqrt[3]{8-x^2}}dx^2 I = ∫ 0 7 3 8 − x 2 x 3 d x = 2 1 ∫ 0 7 3 8 − x 2 x 2 d x 2 = 1 2 ∫ 0 7 t 8 − t 3 d t =\frac12\int_0^{7}\frac{t}{\sqrt[3]{8-t}}dt = 2 1 ∫ 0 7 3 8 − t t d t
Integration by parts:
u = t u=t u = t ; d u = d t du=dt d u = d t ;
d v = d t 8 − t 3 dv=\frac{dt}{\sqrt[3]{8-t}} d v = 3 8 − t d t ; v = − 3 2 ( 8 − t ) 2 3 v=-\frac32(8-t)^{\frac23} v = − 2 3 ( 8 − t ) 3 2 .
I = − 3 4 ⋅ t ( 8 − t ) 2 3 ∣ 0 7 + 1 2 ∫ 0 7 3 2 ( 8 − t ) 2 3 d t = − 3 4 ⋅ 7 − I=-\frac34\cdot t(8-t)^{\frac23}|_0^7+\frac12\int_0^7\frac32(8-t)^{\frac23}dt=-\frac34\cdot7- I = − 4 3 ⋅ t ( 8 − t ) 3 2 ∣ 0 7 + 2 1 ∫ 0 7 2 3 ( 8 − t ) 3 2 d t = − 4 3 ⋅ 7 − 3 4 ⋅ 3 5 ( 8 − t ) 5 3 ∣ 0 7 = − 21 4 − 9 20 + 9 ⋅ 2 5 20 = 87 10 = 8.7 \frac34\cdot\frac35(8-t)^{\frac53}|_0^7=-\frac{21}{4}-\frac{9}{20}+\frac{9\cdot2^5}{20}=\frac{87}{10}=8.7 4 3 ⋅ 5 3 ( 8 − t ) 3 5 ∣ 0 7 = − 4 21 − 20 9 + 20 9 ⋅ 2 5 = 10 87 = 8.7
Answer: ∫ 0 7 x 3 8 − x 2 3 d x = 8.7 \int_0^{\sqrt7}\frac{x^3}{\sqrt[3]{8-x^2}}dx=8.7 ∫ 0 7 3 8 − x 2 x 3 d x = 8.7 .
Comments