Integration Procedures (Integration by Parts)
∫ y √(y+1)dy
So, the solution is (integration by parts):
"\\int y \\sqrt{y+1} dy = \\int y \\sqrt{y+1} d(y+1) = \\\\\n\\int y d(\\frac{2}{3}(y+1)^{\\frac{3}{2}}) = \\frac{2}{3}y(y+1)^{\\frac{3}{2}} - \\\\\n- \\int \\frac{2}{3}(y+1)^{\\frac{3}{2}} d(y+1) = \\frac{2}{3}y(y+1)^{\\frac{3}{2}} - \\\\\n- \\frac{2}{3} \\frac{2}{5} (y+1)^{\\frac{5}{2}} + const = \\frac{2}{3}(y+1)^{\\frac{3}{2}} \\cdot \\\\\n\\cdot [y - \\frac{2}{5}(y+1) +const = \\frac{2}{15}(y+1)^{\\frac{3}{2}}[3y-2] + \\\\\n+ const"
Comments
Leave a comment