So, the solution is (integration by parts):
∫ y y + 1 d y = ∫ y y + 1 d ( y + 1 ) = ∫ y d ( 2 3 ( y + 1 ) 3 2 ) = 2 3 y ( y + 1 ) 3 2 − − ∫ 2 3 ( y + 1 ) 3 2 d ( y + 1 ) = 2 3 y ( y + 1 ) 3 2 − − 2 3 2 5 ( y + 1 ) 5 2 + c o n s t = 2 3 ( y + 1 ) 3 2 ⋅ ⋅ [ y − 2 5 ( y + 1 ) + c o n s t = 2 15 ( y + 1 ) 3 2 [ 3 y − 2 ] + + c o n s t \int y \sqrt{y+1} dy = \int y \sqrt{y+1} d(y+1) = \\
\int y d(\frac{2}{3}(y+1)^{\frac{3}{2}}) = \frac{2}{3}y(y+1)^{\frac{3}{2}} - \\
- \int \frac{2}{3}(y+1)^{\frac{3}{2}} d(y+1) = \frac{2}{3}y(y+1)^{\frac{3}{2}} - \\
- \frac{2}{3} \frac{2}{5} (y+1)^{\frac{5}{2}} + const = \frac{2}{3}(y+1)^{\frac{3}{2}} \cdot \\
\cdot [y - \frac{2}{5}(y+1) +const = \frac{2}{15}(y+1)^{\frac{3}{2}}[3y-2] + \\
+ const ∫ y y + 1 d y = ∫ y y + 1 d ( y + 1 ) = ∫ y d ( 3 2 ( y + 1 ) 2 3 ) = 3 2 y ( y + 1 ) 2 3 − − ∫ 3 2 ( y + 1 ) 2 3 d ( y + 1 ) = 3 2 y ( y + 1 ) 2 3 − − 3 2 5 2 ( y + 1 ) 2 5 + co n s t = 3 2 ( y + 1 ) 2 3 ⋅ ⋅ [ y − 5 2 ( y + 1 ) + co n s t = 15 2 ( y + 1 ) 2 3 [ 3 y − 2 ] + + co n s t
Comments