Question #176991

Integrals Giving Inverse Trigonometric Functions


1. ∫(x+1)/(x² +1) from 0 to 1


2. ∫(dz)/z(1 + ln² z) from 1 to e


1
Expert's answer
2021-04-12T18:05:51-0400

1) 01x+1x2+1dx\int_{0}^1 \frac{x+1}{x^2 +1}dx = 01xx2+1+1x2+1dx\int_{0}^1 \frac{x}{x^2 +1} + \frac{1}{x^2 + 1}dx

= 01xx2+1dx+011x2+1dx\int_{0}^1 \frac{x}{x^2 +1}dx + \int_{0}^1\frac{1}{x^2 + 1}dx

= 01xx2+1dx\int_{0}^1 \frac{x}{x^2 +1}dx + tan-1(x) 01|_0^1


let x2 + 1 = u     \implies 2xdxdx = dudu & x = 0 then u = 1

    \implies xdxdx = du2\frac{du}{2} & x = 1 then u = 2

therefore given integral becomes,

= 1212udu\int_{1}^2 \frac{1}{2u}du + tan-1(1) - tan-1(0)

= 1212udu\int_{1}^2 \frac{1}{2u}du + π4\frac{\pi}{4} - 0


= 12\frac{1}{2} ln(u) 12|_1^2 + π4\frac{\pi}{4}

= 12\frac{1}{2} ( ln(2) - ln(1) ) + π4\frac{\pi}{4}

= 12\frac{1}{2} ln(2) + π4\frac{\pi}{4}

2) 1e1z(1+ln2(z)dz\int_{1}^e \frac{1}{z(1 + ln^2 (z) }dz     \implies let ln(z)ln(z) = t & z = e then t = 1

    \implies 1zdz=dt\frac{1}{z} dz = dt & z = 1 then t = 0


therefore integral becomes,

= 011(1+t2)dt\int_{0}^1 \frac{1}{(1 + t^2) }dt

= tan-1(t) 01|_0^1∣ ​


= tan-1(1) - tan-1(0)


= π4\frac{\pi}{4}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS