Integrals Giving Inverse Trigonometric Functions
1. ∫(x+1)/(x² +1) from 0 to 1
2. ∫(dz)/z(1 + ln² z) from 1 to e
1) "\\int_{0}^1 \\frac{x+1}{x^2 +1}dx" = "\\int_{0}^1 \\frac{x}{x^2 +1} + \\frac{1}{x^2 + 1}dx"
= "\\int_{0}^1 \\frac{x}{x^2 +1}dx + \\int_{0}^1\\frac{1}{x^2 + 1}dx"
= "\\int_{0}^1 \\frac{x}{x^2 +1}dx" + tan-1(x) "|_0^1"
let x2 + 1 = u "\\implies" 2x"dx" = "du" & x = 0 then u = 1
"\\implies" x"dx" = "\\frac{du}{2}" & x = 1 then u = 2
therefore given integral becomes,
= "\\int_{1}^2 \\frac{1}{2u}du" + tan-1(1) - tan-1(0)
= "\\int_{1}^2 \\frac{1}{2u}du" + "\\frac{\\pi}{4}" - 0
= "\\frac{1}{2}" ln(u) "|_1^2" + "\\frac{\\pi}{4}"
= "\\frac{1}{2}" ( ln(2) - ln(1) ) + "\\frac{\\pi}{4}"
= "\\frac{1}{2}" ln(2) + "\\frac{\\pi}{4}"
2) "\\int_{1}^e \\frac{1}{z(1 + ln^2 (z) }dz" "\\implies" let "ln(z)" = t & z = e then t = 1
"\\implies" "\\frac{1}{z} dz = dt" & z = 1 then t = 0
therefore integral becomes,
= "\\int_{0}^1 \\frac{1}{(1 + t^2) }dt"
= tan-1(t) "|_0^1\u2223 \n\n\u200b"
= tan-1(1) - tan-1(0)
= "\\frac{\\pi}{4}"
Comments
Leave a comment