1) ∫01x2+1x+1dx = ∫01x2+1x+x2+11dx
= ∫01x2+1xdx+∫01x2+11dx
= ∫01x2+1xdx + tan-1(x) ∣01
let x2 + 1 = u ⟹ 2xdx = du & x = 0 then u = 1
⟹ xdx = 2du & x = 1 then u = 2
therefore given integral becomes,
= ∫122u1du + tan-1(1) - tan-1(0)
= ∫122u1du + 4π - 0
= 21 ln(u) ∣12 + 4π
= 21 ( ln(2) - ln(1) ) + 4π
= 21 ln(2) + 4π
2) ∫1ez(1+ln2(z)1dz ⟹ let ln(z) = t & z = e then t = 1
⟹ z1dz=dt & z = 1 then t = 0
therefore integral becomes,
= ∫01(1+t2)1dt
= tan-1(t) ∣01∣
= tan-1(1) - tan-1(0)
= 4π
Comments