Integrals Giving Inverse Trigonometric Functions
∫ dy/√(25+9y²)
Solution.
"\\int\\frac{dy}{\\sqrt{25+9y^2}}"Make a substitution: "u=\\frac{3y}{5}," then "\\frac{du}{dy}=\\frac{3}{5}," since "dy=\\frac{5}{3}du."
So, "\\int\\frac{dy}{\\sqrt{25+9y^2}}=\\frac{1}{3}\\int \\frac{du}{\\sqrt{u^2+1}}."
Make a substitution: "u=\\tan{v}," then "v=\\arctan{u}," since "du=\\sec^2{v}dv."
So,
"\\frac{1}{3}\\int \\frac{du}{\\sqrt{u^2+1}}=\\int \\frac{\\sec^2{v}dv}{\\sqrt{\\tan^2{v}+1}}=\n\\int \\sec{v}dv=\\newline\n=\\int \\frac{\\sec{v}(\\tan{v}+\\sec{v})}{\\tan{v}+\\sec{v}}dv."
Make a substitution: "w=\\tan{v}+\\sec{v}," then "\\frac{dw}{dv}=\\sec{v}\\tan{v}+\\sec^2{v}," since "dv=\\frac{1}{\\sec{v}\\tan{v}+\\sec^2{v}}dw."
So,
"\\int \\frac{\\sec{v}(\\tan{v}+\\sec{v})}{\\tan{v}+\\sec{v}}dv=\\int \\frac{1}{w}dw=\\ln|w|+C=\n\\newline =\\ln |\\tan{v}+\\sec{v}|+C=\\ln |\\sqrt{u^2+1}+u|+C=\\frac{1}{3}\\ln |\\sqrt{9y^2+25}+3y|+C,"
where "C" is some constant.
Answer. "\\int\\frac{dy}{\\sqrt{25+9y^2}}=\\frac{1}{3}\\ln |\\sqrt{9y^2+25}+3y|+C."
Comments
Leave a comment