Solution.
∫ d y 25 + 9 y 2 \int\frac{dy}{\sqrt{25+9y^2}} ∫ 25 + 9 y 2 d y Make a substitution: u = 3 y 5 , u=\frac{3y}{5}, u = 5 3 y , then d u d y = 3 5 , \frac{du}{dy}=\frac{3}{5}, d y d u = 5 3 , since d y = 5 3 d u . dy=\frac{5}{3}du. d y = 3 5 d u .
So, ∫ d y 25 + 9 y 2 = 1 3 ∫ d u u 2 + 1 . \int\frac{dy}{\sqrt{25+9y^2}}=\frac{1}{3}\int \frac{du}{\sqrt{u^2+1}}. ∫ 25 + 9 y 2 d y = 3 1 ∫ u 2 + 1 d u .
Make a substitution: u = tan v , u=\tan{v}, u = tan v , then v = arctan u , v=\arctan{u}, v = arctan u , since d u = sec 2 v d v . du=\sec^2{v}dv. d u = sec 2 v d v .
So,
1 3 ∫ d u u 2 + 1 = ∫ sec 2 v d v tan 2 v + 1 = ∫ sec v d v = = ∫ sec v ( tan v + sec v ) tan v + sec v d v . \frac{1}{3}\int \frac{du}{\sqrt{u^2+1}}=\int \frac{\sec^2{v}dv}{\sqrt{\tan^2{v}+1}}=
\int \sec{v}dv=\newline
=\int \frac{\sec{v}(\tan{v}+\sec{v})}{\tan{v}+\sec{v}}dv. 3 1 ∫ u 2 + 1 d u = ∫ t a n 2 v + 1 s e c 2 v d v = ∫ sec v d v = = ∫ t a n v + s e c v s e c v ( t a n v + s e c v ) d v .
Make a substitution: w = tan v + sec v , w=\tan{v}+\sec{v}, w = tan v + sec v , then d w d v = sec v tan v + sec 2 v , \frac{dw}{dv}=\sec{v}\tan{v}+\sec^2{v}, d v d w = sec v tan v + sec 2 v , since d v = 1 sec v tan v + sec 2 v d w . dv=\frac{1}{\sec{v}\tan{v}+\sec^2{v}}dw. d v = s e c v t a n v + s e c 2 v 1 d w .
So,
∫ sec v ( tan v + sec v ) tan v + sec v d v = ∫ 1 w d w = ln ∣ w ∣ + C = = ln ∣ tan v + sec v ∣ + C = ln ∣ u 2 + 1 + u ∣ + C = 1 3 ln ∣ 9 y 2 + 25 + 3 y ∣ + C , \int \frac{\sec{v}(\tan{v}+\sec{v})}{\tan{v}+\sec{v}}dv=\int \frac{1}{w}dw=\ln|w|+C=
\newline =\ln |\tan{v}+\sec{v}|+C=\ln |\sqrt{u^2+1}+u|+C=\frac{1}{3}\ln |\sqrt{9y^2+25}+3y|+C, ∫ t a n v + s e c v s e c v ( t a n v + s e c v ) d v = ∫ w 1 d w = ln ∣ w ∣ + C = = ln ∣ tan v + sec v ∣ + C = ln ∣ u 2 + 1 + u ∣ + C = 3 1 ln ∣ 9 y 2 + 25 + 3 y ∣ + C ,
where C C C is some constant.
Answer. ∫ d y 25 + 9 y 2 = 1 3 ln ∣ 9 y 2 + 25 + 3 y ∣ + C . \int\frac{dy}{\sqrt{25+9y^2}}=\frac{1}{3}\ln |\sqrt{9y^2+25}+3y|+C. ∫ 25 + 9 y 2 d y = 3 1 ln ∣ 9 y 2 + 25 + 3 y ∣ + C .
Comments