Question #176980

Integrals Giving Inverse Trigonometric Functions


∫ dy/√(25+9y²)


1
Expert's answer
2021-04-15T16:53:59-0400

Solution.

dy25+9y2\int\frac{dy}{\sqrt{25+9y^2}}

Make a substitution: u=3y5,u=\frac{3y}{5}, then dudy=35,\frac{du}{dy}=\frac{3}{5}, since dy=53du.dy=\frac{5}{3}du.

So, dy25+9y2=13duu2+1.\int\frac{dy}{\sqrt{25+9y^2}}=\frac{1}{3}\int \frac{du}{\sqrt{u^2+1}}.

Make a substitution: u=tanv,u=\tan{v}, then v=arctanu,v=\arctan{u}, since du=sec2vdv.du=\sec^2{v}dv.

So,

13duu2+1=sec2vdvtan2v+1=secvdv==secv(tanv+secv)tanv+secvdv.\frac{1}{3}\int \frac{du}{\sqrt{u^2+1}}=\int \frac{\sec^2{v}dv}{\sqrt{\tan^2{v}+1}}= \int \sec{v}dv=\newline =\int \frac{\sec{v}(\tan{v}+\sec{v})}{\tan{v}+\sec{v}}dv.

Make a substitution: w=tanv+secv,w=\tan{v}+\sec{v}, then dwdv=secvtanv+sec2v,\frac{dw}{dv}=\sec{v}\tan{v}+\sec^2{v}, since dv=1secvtanv+sec2vdw.dv=\frac{1}{\sec{v}\tan{v}+\sec^2{v}}dw.

So,

secv(tanv+secv)tanv+secvdv=1wdw=lnw+C==lntanv+secv+C=lnu2+1+u+C=13ln9y2+25+3y+C,\int \frac{\sec{v}(\tan{v}+\sec{v})}{\tan{v}+\sec{v}}dv=\int \frac{1}{w}dw=\ln|w|+C= \newline =\ln |\tan{v}+\sec{v}|+C=\ln |\sqrt{u^2+1}+u|+C=\frac{1}{3}\ln |\sqrt{9y^2+25}+3y|+C,

where CC is some constant.

Answer. dy25+9y2=13ln9y2+25+3y+C.\int\frac{dy}{\sqrt{25+9y^2}}=\frac{1}{3}\ln |\sqrt{9y^2+25}+3y|+C.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS