Solution.
∫25+9y2dyMake a substitution: u=53y, then dydu=53, since dy=35du.
So, ∫25+9y2dy=31∫u2+1du.
Make a substitution: u=tanv, then v=arctanu, since du=sec2vdv.
So,
31∫u2+1du=∫tan2v+1sec2vdv=∫secvdv==∫tanv+secvsecv(tanv+secv)dv.
Make a substitution: w=tanv+secv, then dvdw=secvtanv+sec2v, since dv=secvtanv+sec2v1dw.
So,
∫tanv+secvsecv(tanv+secv)dv=∫w1dw=ln∣w∣+C==ln∣tanv+secv∣+C=ln∣u2+1+u∣+C=31ln∣9y2+25+3y∣+C,
where C is some constant.
Answer. ∫25+9y2dy=31ln∣9y2+25+3y∣+C.
Comments