Integrals Giving Inverse Trigonometric Functions
∫ dx/√(9-x²)
We know that ,∫dxa2−x2=sin−1xa+C\int \dfrac{dx}{\sqrt{a^2-x^2}}=sin^{-1}\dfrac{x}{a}+ C∫a2−x2dx=sin−1ax+C
⇒∫dx9−x2=∫dx32−x2=sin−1x3+C\Rightarrow \int \dfrac{dx}{\sqrt{9-x^2}}=\int \dfrac{dx}{\sqrt{3^2-x^2}}= sin^{-1}\dfrac{x}{3} +C⇒∫9−x2dx=∫32−x2dx=sin−13x+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments