We have given the integral,
I=∫9t2−16dt
I=∫−16(1−169t2)dt
I=∫4i1−(43t)2dt
Substituting x=43t
then, dx=43dt
Hence, I=3i1∫1−x2dx
Now substituting,
x=sinudx=cosudu
then, I=3i1∫cosucosudu
I=3i1∫du
I=3i1[u]+C
Now putting the value of u in above equation
I=3i1sin−1x+C
Now putting the value of x in the above equation,
I=3i1sin−1(43t)+C
Comments