We have given the integral,
I = ∫ d t 9 t 2 − 16 I = \int \dfrac{dt}{\sqrt{9t^2-16}} I = ∫ 9 t 2 − 16 d t
I = ∫ d t − 16 ( 1 − 9 t 2 16 ) I=\int \dfrac{dt}{\sqrt{-16(1-\dfrac{9t^2}{16})}} I = ∫ − 16 ( 1 − 16 9 t 2 ) d t
I = ∫ d t 4 i 1 − ( 3 t 4 ) 2 I = \int \dfrac{dt}{4i\sqrt{1-(\dfrac{3t}{4})^2}} I = ∫ 4 i 1 − ( 4 3 t ) 2 d t
Substituting x = 3 t 4 x = \dfrac{3t}{4} x = 4 3 t
then, d x = 3 4 d t dx = \dfrac{3}{4}dt d x = 4 3 d t
Hence, I = 1 3 i ∫ d x 1 − x 2 I = \dfrac{1}{3i}\int \dfrac{dx}{\sqrt{1-x^2}} I = 3 i 1 ∫ 1 − x 2 d x
Now substituting,
x = s i n u d x = c o s u d u x= sinu\\
dx = cosudu x = s in u d x = cos u d u
then, I = 1 3 i ∫ c o s u c o s u d u I = \dfrac{1}{3i}\int\dfrac{cosu}{cosu}du I = 3 i 1 ∫ cos u cos u d u
I = 1 3 i ∫ d u I = \dfrac{1}{3i}\int du I = 3 i 1 ∫ d u
I = 1 3 i [ u ] + C I = \dfrac{1}{3i}[u]+C I = 3 i 1 [ u ] + C
Now putting the value of u in above equation
I = 1 3 i s i n − 1 x + C I= \dfrac{1}{3i}sin^{-1}x + C I = 3 i 1 s i n − 1 x + C
Now putting the value of x in the above equation,
I = 1 3 i s i n − 1 ( 3 t 4 ) + C I = \dfrac{1}{3i}sin^{-1}(\dfrac{3t}{4})+C I = 3 i 1 s i n − 1 ( 4 3 t ) + C
Comments