assuming uniform mass density so that ρ(x,y)=k for k a constant, the center of mass coincides with the centroid of the region;
we have
total mass; m=ρ∫−1/21/2[h(x)−g(x)]dx
=k∫−1/21/2[e2x−(−cosπx)dx]
=k[21e2x+π1sinπx]−1/21/2
=[(21e+π1sinxπ)−(21e−1+π1sin2−π)]k
=(21e−21e−1+π2)k…(i)
the moments of the region about the x- axis equal;
mx=2k∫−1/21/2[(e2x)2+(−cosπx)2]dx
=21k∫−1/21/2(e4π+cos2πx)dx
=21k∫−1/21/2[e4x+21(1+cos2πx)]dx
=21k[41e2+21x+41πsin2πx]−1/21/2
=21k[(41e2+41+41πsinπ)−(41e−2−41+41πsin(−π))]
=21k[41e2−41e−2+21]=k[4e2e4−1+2e2]…(ii)
and moments of the region about y-axis ;
=k∫−1/21/2(xe2x+xcosπx)dx
=k[21xe2x−41e2x+π1xsinπx+π21cosπx]−1/21/2
=k(21e−1)=21ke−1
the center of mass, ( xˉ , yˉ ) is the point
xˉ=my/m and yˉ=mx/m
xˉ=(k(21e−1/2e−1+π2)(21e−1)=πe2−π+4eπ=0.102
yˉ=k[21e−−21e−1+π2))21k[41e2−41e−2+21]=(4πe3−4πe+16e2)(πe4−π+2πe2)=0.638
(0.102,0.638) is the center of mass of the region
Comments