Find the center mass of the region bounded by y=e^2x and y=-cos(πx) between - 1/2 ≤x≤1/2.
assuming uniform mass density so that "\u03c1(x,y)=k" for k a constant, the center of mass coincides with the centroid of the region;
we have
total mass; "m=\u03c1\u222b_{-1\/2}^{1\/2} [h(x)-g(x)]dx"
"=k\u222b_{-1\/2}^{1\/2}[e^2x-(-cos\u03c0x)dx]"
"=k[\\frac12 e^2x+\\frac1\u03c0 sin\u2061\u03c0x ]_{-1\/2}^{1\/2}"
"=[(\\frac12 e+\\frac 1\u03c0 sin\u2061 \\frac\u03c0x )-(\\frac 12 e^{-1}+ \\frac 1\u03c0 sin \\frac {-\u03c0}{2 } )]k"
"=(\\frac 12 e-\\frac12 e^{-1} +\\frac 2\u03c0)k \u2026(i)"
the moments of the region about the x- axis equal;
"m_x=\\frac k 2 \u222b_{-1\/2}^{1\/2}[(e^2x )^2+(-cos\u2061\u03c0x )^2] dx"
"=\\frac 12 k \u222b_{-1\/2}^{1\/2}(e^4\u03c0+cos^2\u2061\u03c0x)dx"
"=\\frac12k \u222b_{-1\/2}^{1\/2}[e^4x+\\frac 12 (1+cos\u20612\u03c0x )]dx"
"=\\frac12 k [\\frac14 e^2+\\frac 12 x+ \\frac14\u03c0 sin\u20612\u03c0x ]_{-1\/2}^{1\/2}"
"=\\frac 12 k [(\\frac14 e^2+\\frac14+\\frac14\u03c0 sin\u2061\u03c0 )-(\\frac 14 e^{-2}-\\frac14+\\frac14\u03c0 sin\u2061(-\u03c0))]"
"=\\frac12 k [\\frac14 e^2-\\frac14 e^{-2}+\\frac12]=k[\\frac {e^4-1+2e^2 }{4e^2 }]\u2026(ii)"
and moments of the region about y-axis ;
"=k\u222b_{-1\/2}^{1\/2} (xe^2x+xcos \u03c0x)dx"
"=k[\\frac12 xe^2x-\\frac14 e^2x+\\frac1\u03c0 x sin\u2061\u03c0x+\\frac1{\u03c0^2} cos\u2061\u03c0x ]_{-1\/2}^{1\/2}"
"=k(\\frac12 e^{-1} )=\\frac12 ke^{-1}"
the center of mass, ( "\\bar x" , "\\bar y" ) is the point
"\\bar x=m_y\/m" and "\\bar y=m_x\/m"
"\\bar x=\\frac {(\\frac12 e^{-1})}{(k(\\frac12 e-1\/2 e^{-1}+\\frac2\u03c0)}=\\frac\u03c0{\u03c0e^2-\u03c0+4 e}=0.102"
"\\bar y =\\frac{\\frac12 k [\\frac14 e^2-\\frac14 e^{-2}+\\frac12]} {k[\\frac 12 e-- \\frac 12 e^{-1}+\\frac 2 \\pi ))}= \\frac {(\u03c0e^4-\u03c0+2\u03c0e^2)} {(4\u03c0e^3-4\u03c0e+16 e^2 )}=0.638"
"(0.102,0.638)" is the center of mass of the region
Comments
Leave a comment