Question #176687

Find the center mass of the region bounded by y=e^2x and y=-cos(πx) between - 1/2 ≤x≤1/2.


1
Expert's answer
2021-04-26T07:24:28-0400

assuming uniform mass density so that ρ(x,y)=kρ(x,y)=k for k a constant, the center of mass coincides with the centroid of the region;

we have

total mass; m=ρ1/21/2[h(x)g(x)]dxm=ρ∫_{-1/2}^{1/2} [h(x)-g(x)]dx

=k1/21/2[e2x(cosπx)dx]=k∫_{-1/2}^{1/2}[e^2x-(-cosπx)dx]

=k[12e2x+1πsinπx]1/21/2=k[\frac12 e^2x+\frac1π sin⁡πx ]_{-1/2}^{1/2}

=[(12e+1πsinπx)(12e1+1πsinπ2)]k=[(\frac12 e+\frac 1π sin⁡ \fracπx )-(\frac 12 e^{-1}+ \frac 1π sin \frac {-π}{2 } )]k

=(12e12e1+2π)k(i)=(\frac 12 e-\frac12 e^{-1} +\frac 2π)k …(i)

the moments of the region about the x- axis equal;

mx=k21/21/2[(e2x)2+(cosπx)2]dxm_x=\frac k 2 ∫_{-1/2}^{1/2}[(e^2x )^2+(-cos⁡πx )^2] dx

=12k1/21/2(e4π+cos2πx)dx=\frac 12 k ∫_{-1/2}^{1/2}(e^4π+cos^2⁡πx)dx

=12k1/21/2[e4x+12(1+cos2πx)]dx=\frac12k ∫_{-1/2}^{1/2}[e^4x+\frac 12 (1+cos⁡2πx )]dx

=12k[14e2+12x+14πsin2πx]1/21/2=\frac12 k [\frac14 e^2+\frac 12 x+ \frac14π sin⁡2πx ]_{-1/2}^{1/2}

=12k[(14e2+14+14πsinπ)(14e214+14πsin(π))]=\frac 12 k [(\frac14 e^2+\frac14+\frac14π sin⁡π )-(\frac 14 e^{-2}-\frac14+\frac14π sin⁡(-π))]

=12k[14e214e2+12]=k[e41+2e24e2](ii)=\frac12 k [\frac14 e^2-\frac14 e^{-2}+\frac12]=k[\frac {e^4-1+2e^2 }{4e^2 }]…(ii)

and moments of the region about y-axis ;

=k1/21/2(xe2x+xcosπx)dx=k∫_{-1/2}^{1/2} (xe^2x+xcos πx)dx

=k[12xe2x14e2x+1πxsinπx+1π2cosπx]1/21/2=k[\frac12 xe^2x-\frac14 e^2x+\frac1π x sin⁡πx+\frac1{π^2} cos⁡πx ]_{-1/2}^{1/2}

=k(12e1)=12ke1=k(\frac12 e^{-1} )=\frac12 ke^{-1}

the center of mass, ( xˉ\bar x , yˉ\bar y ) is the point

xˉ=my/m\bar x=m_y/m and yˉ=mx/m\bar y=m_x/m

xˉ=(12e1)(k(12e1/2e1+2π)=ππe2π+4e=0.102\bar x=\frac {(\frac12 e^{-1})}{(k(\frac12 e-1/2 e^{-1}+\frac2π)}=\fracπ{πe^2-π+4 e}=0.102

yˉ=12k[14e214e2+12]k[12e12e1+2π))=(πe4π+2πe2)(4πe34πe+16e2)=0.638\bar y =\frac{\frac12 k [\frac14 e^2-\frac14 e^{-2}+\frac12]} {k[\frac 12 e-- \frac 12 e^{-1}+\frac 2 \pi ))}= \frac {(πe^4-π+2πe^2)} {(4πe^3-4πe+16 e^2 )}=0.638

(0.102,0.638)(0.102,0.638) is the center of mass of the region





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS