Question #176680

Find the area inside the inner loop of r=3-8cos∅.


1
Expert's answer
2021-04-15T07:25:28-0400

Given curve  is symmetric with respect to the xx -axis. Then consider lower part of the figure bounded by the inner loop.

General equation of given curve is

r=lacosθr=l-a\cos\theta

The basic formula for area in polar coordinates is

S=12αβr2dθ\displaystyle S=\frac{1}{2}\int\limits_\alpha^\beta r^2d\theta

For the lower part of the inner loop

α=0\alpha=0

β=arccos(la)\beta=\arccos\left(\dfrac{l}{a}\right)

To answer the question take the area twice


S=2120arccos(38)(38cosθ)2dθ=\displaystyle S=2\cdot\frac{1}{2}\int\limits_0^{\arccos\left(\frac{3}{8}\right)}\left(3-8\cos\theta\right)^2d\theta=


0arccos(38)(32238cosθ+(8cosθ)2)dθ=\displaystyle\int\limits_0^{\arccos\left(\frac{3}{8}\right)}\left(3^2-2\cdot3\cdot8\cos\theta+(8\cos\theta)^2\right)d\theta=


0arccos(38)(948cosθ+64cos2θ)dθ=\displaystyle\int\limits_0^{\arccos\left(\frac{3}{8}\right)}\left(9-48\cos\theta+64\cos^2\theta\right)d\theta=

use formula cos2θ=12(1+cos2θ)\cos^2\theta=\dfrac{1}{2}(1+\cos2\theta)


0arccos(38)(948cosθ+6412(1+cos2θ))dθ=\displaystyle\int\limits_0^{\arccos\left(\frac{3}{8}\right)}\left(9-48\cos\theta+64\cdot\frac{1}{2}(1+\cos2\theta)\right)d\theta=


0arccos(38)(948cosθ+32(1+cos2θ))dθ=\displaystyle\int\limits_0^{\arccos\left(\frac{3}{8}\right)}\left(9-48\cos\theta+32(1+\cos2\theta)\right)d\theta=


0arccos(38)(948cosθ+32+32cos2θ)dθ=\displaystyle\int\limits_0^{\arccos\left(\frac{3}{8}\right)}\left(9-48\cos\theta+32+32\cos2\theta\right)d\theta=


0arccos(38)(4148cosθ+32cos2θ)dθ=\displaystyle\int\limits_0^{\arccos\left(\frac{3}{8}\right)}\left(41-48\cos\theta+32\cos2\theta\right)d\theta=

take the antiderivative


[41θ48sinθ+3212sin2θ]0arccos(38)=\displaystyle\left[41\theta-48\sin\theta+32\cdot\frac{1}{2}\sin2\theta\right]_0^{\arccos\left(\frac{3}{8}\right)}=


[41θ48sinθ+16sin2θ]0arccos(38)=\displaystyle\Bigg[41\theta-48\sin\theta+16\sin2\theta\Bigg]_0^{\arccos\left(\frac{3}{8}\right)}=


[41arccos(38)48sin(arccos(38))+16sin(2arccos(38))(41048sin0+16sin(20))]=\displaystyle\Bigg[41\arccos\left(\frac{3}{8}\right)-48\sin\left(\arccos\left(\frac{3}{8}\right)\right)+16\sin\left(2\cdot\arccos\left(\frac{3}{8}\right)\right)-\Big(41\cdot0-48\sin0+16\sin(2\cdot0)\Big)\Bigg]=

simplify


41arccos(38)48sin(arccos(38))+16sin(2arccos(38))=\displaystyle41\arccos\left(\frac{3}{8}\right)-48\sin\left(\arccos\left(\frac{3}{8}\right)\right)+16\sin\left(2\cdot\arccos\left(\frac{3}{8}\right)\right)=


use sinα=1cos2α\sin\alpha=\sqrt{1-\cos^2\alpha} when 0<α<π20<\alpha<\dfrac{\pi}{2}

and sin(2α)=2sinαcosα\sin(2\alpha)=2\sin\alpha\cos\alpha


41arccos(38)481cos2(arccos(38))+162sin(arccos(38))cos(arccos(38))=\displaystyle41\arccos\left(\frac{3}{8}\right)-48\sqrt{1-\cos^2\left(\arccos\left(\frac{3}{8}\right)\right)}+16\cdot2\cdot\sin\left(\arccos\left(\frac{3}{8}\right)\right)\cdot\cos\left(\arccos\left(\frac{3}{8}\right)\right)=


41arccos(38)481(38)2+32sin(arccos(38))38=\displaystyle41\arccos\left(\frac{3}{8}\right)-48\sqrt{1-\left(\frac{3}{8}\right)^2}+32\cdot\sin\left(\arccos\left(\frac{3}{8}\right)\right)\cdot\frac{3}{8}=


41arccos(38)481(38)2+321(38)238=\displaystyle41\arccos\left(\frac{3}{8}\right)-48\sqrt{1-\left(\frac{3}{8}\right)^2}+32\cdot\sqrt{1-\left(\frac{3}{8}\right)^2}\cdot\frac{3}{8}=


41arccos(38)481964+32196438=\displaystyle41\arccos\left(\frac{3}{8}\right)-48\sqrt{1-\frac{9}{64}}+32\cdot\sqrt{1-\frac{9}{64}}\cdot\frac{3}{8}=


41arccos(38)4864964+326496438=\displaystyle41\arccos\left(\frac{3}{8}\right)-48\sqrt{\frac{64-9}{64}}+32\cdot\sqrt{\frac{64-9}{64}}\cdot\frac{3}{8}=


41arccos(38)485564+32556438=\displaystyle41\arccos\left(\frac{3}{8}\right)-48\sqrt{\frac{55}{64}}+32\cdot\sqrt{\frac{55}{64}}\cdot\frac{3}{8}=


41arccos(38)48558+3255838=\displaystyle41\arccos\left(\frac{3}{8}\right)-48\frac{\sqrt{55}}{8}+32\cdot\frac{\sqrt{55}}{8}\cdot\frac{3}{8}=


41arccos(38)655+3552=\displaystyle41\arccos\left(\frac{3}{8}\right)-6\sqrt{55}+\frac{3\sqrt{55}}{2}=


41arccos(38)+3255655=\displaystyle41\arccos\left(\frac{3}{8}\right)+\frac{3}{2}\sqrt{55}-6\sqrt{55}=


41arccos(38)+(326)55=\displaystyle41\arccos\left(\frac{3}{8}\right)+\left(\frac{3}{2}-6\right)\sqrt{55}=


41arccos(38)9255\displaystyle41\arccos\left(\frac{3}{8}\right)-\frac{9}{2}\sqrt{55}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS