Given curve is symmetric with respect to the x x x -axis. Then consider lower part of the figure bounded by the inner loop.
General equation of given curve is
r = l − a cos θ r=l-a\cos\theta r = l − a cos θ
The basic formula for area in polar coordinates is
S = 1 2 ∫ α β r 2 d θ \displaystyle S=\frac{1}{2}\int\limits_\alpha^\beta r^2d\theta S = 2 1 α ∫ β r 2 d θ
For the lower part of the inner loop
α = 0 \alpha=0 α = 0
β = arccos ( l a ) \beta=\arccos\left(\dfrac{l}{a}\right) β = arccos ( a l )
To answer the question take the area twice
S = 2 ⋅ 1 2 ∫ 0 arccos ( 3 8 ) ( 3 − 8 cos θ ) 2 d θ = \displaystyle S=2\cdot\frac{1}{2}\int\limits_0^{\arccos\left(\frac{3}{8}\right)}\left(3-8\cos\theta\right)^2d\theta= S = 2 ⋅ 2 1 0 ∫ a r c c o s ( 8 3 ) ( 3 − 8 cos θ ) 2 d θ =
∫ 0 arccos ( 3 8 ) ( 3 2 − 2 ⋅ 3 ⋅ 8 cos θ + ( 8 cos θ ) 2 ) d θ = \displaystyle\int\limits_0^{\arccos\left(\frac{3}{8}\right)}\left(3^2-2\cdot3\cdot8\cos\theta+(8\cos\theta)^2\right)d\theta= 0 ∫ a r c c o s ( 8 3 ) ( 3 2 − 2 ⋅ 3 ⋅ 8 cos θ + ( 8 cos θ ) 2 ) d θ =
∫ 0 arccos ( 3 8 ) ( 9 − 48 cos θ + 64 cos 2 θ ) d θ = \displaystyle\int\limits_0^{\arccos\left(\frac{3}{8}\right)}\left(9-48\cos\theta+64\cos^2\theta\right)d\theta= 0 ∫ a r c c o s ( 8 3 ) ( 9 − 48 cos θ + 64 cos 2 θ ) d θ =
use formula cos 2 θ = 1 2 ( 1 + cos 2 θ ) \cos^2\theta=\dfrac{1}{2}(1+\cos2\theta) cos 2 θ = 2 1 ( 1 + cos 2 θ )
∫ 0 arccos ( 3 8 ) ( 9 − 48 cos θ + 64 ⋅ 1 2 ( 1 + cos 2 θ ) ) d θ = \displaystyle\int\limits_0^{\arccos\left(\frac{3}{8}\right)}\left(9-48\cos\theta+64\cdot\frac{1}{2}(1+\cos2\theta)\right)d\theta= 0 ∫ a r c c o s ( 8 3 ) ( 9 − 48 cos θ + 64 ⋅ 2 1 ( 1 + cos 2 θ ) ) d θ =
∫ 0 arccos ( 3 8 ) ( 9 − 48 cos θ + 32 ( 1 + cos 2 θ ) ) d θ = \displaystyle\int\limits_0^{\arccos\left(\frac{3}{8}\right)}\left(9-48\cos\theta+32(1+\cos2\theta)\right)d\theta= 0 ∫ a r c c o s ( 8 3 ) ( 9 − 48 cos θ + 32 ( 1 + cos 2 θ ) ) d θ =
∫ 0 arccos ( 3 8 ) ( 9 − 48 cos θ + 32 + 32 cos 2 θ ) d θ = \displaystyle\int\limits_0^{\arccos\left(\frac{3}{8}\right)}\left(9-48\cos\theta+32+32\cos2\theta\right)d\theta= 0 ∫ a r c c o s ( 8 3 ) ( 9 − 48 cos θ + 32 + 32 cos 2 θ ) d θ =
∫ 0 arccos ( 3 8 ) ( 41 − 48 cos θ + 32 cos 2 θ ) d θ = \displaystyle\int\limits_0^{\arccos\left(\frac{3}{8}\right)}\left(41-48\cos\theta+32\cos2\theta\right)d\theta= 0 ∫ a r c c o s ( 8 3 ) ( 41 − 48 cos θ + 32 cos 2 θ ) d θ =
take the antiderivative
[ 41 θ − 48 sin θ + 32 ⋅ 1 2 sin 2 θ ] 0 arccos ( 3 8 ) = \displaystyle\left[41\theta-48\sin\theta+32\cdot\frac{1}{2}\sin2\theta\right]_0^{\arccos\left(\frac{3}{8}\right)}= [ 41 θ − 48 sin θ + 32 ⋅ 2 1 sin 2 θ ] 0 a r c c o s ( 8 3 ) =
[ 41 θ − 48 sin θ + 16 sin 2 θ ] 0 arccos ( 3 8 ) = \displaystyle\Bigg[41\theta-48\sin\theta+16\sin2\theta\Bigg]_0^{\arccos\left(\frac{3}{8}\right)}= [ 41 θ − 48 sin θ + 16 sin 2 θ ] 0 a r c c o s ( 8 3 ) =
[ 41 arccos ( 3 8 ) − 48 sin ( arccos ( 3 8 ) ) + 16 sin ( 2 ⋅ arccos ( 3 8 ) ) − ( 41 ⋅ 0 − 48 sin 0 + 16 sin ( 2 ⋅ 0 ) ) ] = \displaystyle\Bigg[41\arccos\left(\frac{3}{8}\right)-48\sin\left(\arccos\left(\frac{3}{8}\right)\right)+16\sin\left(2\cdot\arccos\left(\frac{3}{8}\right)\right)-\Big(41\cdot0-48\sin0+16\sin(2\cdot0)\Big)\Bigg]= [ 41 arccos ( 8 3 ) − 48 sin ( arccos ( 8 3 ) ) + 16 sin ( 2 ⋅ arccos ( 8 3 ) ) − ( 41 ⋅ 0 − 48 sin 0 + 16 sin ( 2 ⋅ 0 ) ) ] =
simplify
41 arccos ( 3 8 ) − 48 sin ( arccos ( 3 8 ) ) + 16 sin ( 2 ⋅ arccos ( 3 8 ) ) = \displaystyle41\arccos\left(\frac{3}{8}\right)-48\sin\left(\arccos\left(\frac{3}{8}\right)\right)+16\sin\left(2\cdot\arccos\left(\frac{3}{8}\right)\right)= 41 arccos ( 8 3 ) − 48 sin ( arccos ( 8 3 ) ) + 16 sin ( 2 ⋅ arccos ( 8 3 ) ) =
use sin α = 1 − cos 2 α \sin\alpha=\sqrt{1-\cos^2\alpha} sin α = 1 − cos 2 α when 0 < α < π 2 0<\alpha<\dfrac{\pi}{2} 0 < α < 2 π
and sin ( 2 α ) = 2 sin α cos α \sin(2\alpha)=2\sin\alpha\cos\alpha sin ( 2 α ) = 2 sin α cos α
41 arccos ( 3 8 ) − 48 1 − cos 2 ( arccos ( 3 8 ) ) + 16 ⋅ 2 ⋅ sin ( arccos ( 3 8 ) ) ⋅ cos ( arccos ( 3 8 ) ) = \displaystyle41\arccos\left(\frac{3}{8}\right)-48\sqrt{1-\cos^2\left(\arccos\left(\frac{3}{8}\right)\right)}+16\cdot2\cdot\sin\left(\arccos\left(\frac{3}{8}\right)\right)\cdot\cos\left(\arccos\left(\frac{3}{8}\right)\right)= 41 arccos ( 8 3 ) − 48 1 − cos 2 ( arccos ( 8 3 ) ) + 16 ⋅ 2 ⋅ sin ( arccos ( 8 3 ) ) ⋅ cos ( arccos ( 8 3 ) ) =
41 arccos ( 3 8 ) − 48 1 − ( 3 8 ) 2 + 32 ⋅ sin ( arccos ( 3 8 ) ) ⋅ 3 8 = \displaystyle41\arccos\left(\frac{3}{8}\right)-48\sqrt{1-\left(\frac{3}{8}\right)^2}+32\cdot\sin\left(\arccos\left(\frac{3}{8}\right)\right)\cdot\frac{3}{8}= 41 arccos ( 8 3 ) − 48 1 − ( 8 3 ) 2 + 32 ⋅ sin ( arccos ( 8 3 ) ) ⋅ 8 3 =
41 arccos ( 3 8 ) − 48 1 − ( 3 8 ) 2 + 32 ⋅ 1 − ( 3 8 ) 2 ⋅ 3 8 = \displaystyle41\arccos\left(\frac{3}{8}\right)-48\sqrt{1-\left(\frac{3}{8}\right)^2}+32\cdot\sqrt{1-\left(\frac{3}{8}\right)^2}\cdot\frac{3}{8}= 41 arccos ( 8 3 ) − 48 1 − ( 8 3 ) 2 + 32 ⋅ 1 − ( 8 3 ) 2 ⋅ 8 3 =
41 arccos ( 3 8 ) − 48 1 − 9 64 + 32 ⋅ 1 − 9 64 ⋅ 3 8 = \displaystyle41\arccos\left(\frac{3}{8}\right)-48\sqrt{1-\frac{9}{64}}+32\cdot\sqrt{1-\frac{9}{64}}\cdot\frac{3}{8}= 41 arccos ( 8 3 ) − 48 1 − 64 9 + 32 ⋅ 1 − 64 9 ⋅ 8 3 =
41 arccos ( 3 8 ) − 48 64 − 9 64 + 32 ⋅ 64 − 9 64 ⋅ 3 8 = \displaystyle41\arccos\left(\frac{3}{8}\right)-48\sqrt{\frac{64-9}{64}}+32\cdot\sqrt{\frac{64-9}{64}}\cdot\frac{3}{8}= 41 arccos ( 8 3 ) − 48 64 64 − 9 + 32 ⋅ 64 64 − 9 ⋅ 8 3 =
41 arccos ( 3 8 ) − 48 55 64 + 32 ⋅ 55 64 ⋅ 3 8 = \displaystyle41\arccos\left(\frac{3}{8}\right)-48\sqrt{\frac{55}{64}}+32\cdot\sqrt{\frac{55}{64}}\cdot\frac{3}{8}= 41 arccos ( 8 3 ) − 48 64 55 + 32 ⋅ 64 55 ⋅ 8 3 =
41 arccos ( 3 8 ) − 48 55 8 + 32 ⋅ 55 8 ⋅ 3 8 = \displaystyle41\arccos\left(\frac{3}{8}\right)-48\frac{\sqrt{55}}{8}+32\cdot\frac{\sqrt{55}}{8}\cdot\frac{3}{8}= 41 arccos ( 8 3 ) − 48 8 55 + 32 ⋅ 8 55 ⋅ 8 3 =
41 arccos ( 3 8 ) − 6 55 + 3 55 2 = \displaystyle41\arccos\left(\frac{3}{8}\right)-6\sqrt{55}+\frac{3\sqrt{55}}{2}= 41 arccos ( 8 3 ) − 6 55 + 2 3 55 =
41 arccos ( 3 8 ) + 3 2 55 − 6 55 = \displaystyle41\arccos\left(\frac{3}{8}\right)+\frac{3}{2}\sqrt{55}-6\sqrt{55}= 41 arccos ( 8 3 ) + 2 3 55 − 6 55 =
41 arccos ( 3 8 ) + ( 3 2 − 6 ) 55 = \displaystyle41\arccos\left(\frac{3}{8}\right)+\left(\frac{3}{2}-6\right)\sqrt{55}= 41 arccos ( 8 3 ) + ( 2 3 − 6 ) 55 =
41 arccos ( 3 8 ) − 9 2 55 \displaystyle41\arccos\left(\frac{3}{8}\right)-\frac{9}{2}\sqrt{55} 41 arccos ( 8 3 ) − 2 9 55
Comments