Given curve is symmetric with respect to the x -axis. Then consider lower part of the figure bounded by the inner loop.
General equation of given curve is
r=l−acosθ
The basic formula for area in polar coordinates is
S=21α∫βr2dθ
For the lower part of the inner loop
α=0
β=arccos(al)
To answer the question take the area twice
S=2⋅210∫arccos(83)(3−8cosθ)2dθ=
0∫arccos(83)(32−2⋅3⋅8cosθ+(8cosθ)2)dθ=
0∫arccos(83)(9−48cosθ+64cos2θ)dθ=
use formula cos2θ=21(1+cos2θ)
0∫arccos(83)(9−48cosθ+64⋅21(1+cos2θ))dθ=
0∫arccos(83)(9−48cosθ+32(1+cos2θ))dθ=
0∫arccos(83)(9−48cosθ+32+32cos2θ)dθ=
0∫arccos(83)(41−48cosθ+32cos2θ)dθ=
take the antiderivative
[41θ−48sinθ+32⋅21sin2θ]0arccos(83)=
[41θ−48sinθ+16sin2θ]0arccos(83)=
[41arccos(83)−48sin(arccos(83))+16sin(2⋅arccos(83))−(41⋅0−48sin0+16sin(2⋅0))]=
simplify
41arccos(83)−48sin(arccos(83))+16sin(2⋅arccos(83))=
use sinα=1−cos2α when 0<α<2π
and sin(2α)=2sinαcosα
41arccos(83)−481−cos2(arccos(83))+16⋅2⋅sin(arccos(83))⋅cos(arccos(83))=
41arccos(83)−481−(83)2+32⋅sin(arccos(83))⋅83=
41arccos(83)−481−(83)2+32⋅1−(83)2⋅83=
41arccos(83)−481−649+32⋅1−649⋅83=
41arccos(83)−486464−9+32⋅6464−9⋅83=
41arccos(83)−486455+32⋅6455⋅83=
41arccos(83)−48855+32⋅855⋅83=
41arccos(83)−655+2355=
41arccos(83)+2355−655=
41arccos(83)+(23−6)55=
41arccos(83)−2955
Comments