r = 4 − 2 cos θ r=4-2\cos \theta r = 4 − 2 cos θ and r = 6 + 2 cos θ r=6+2\cos \theta r = 6 + 2 cos θ
Let us find points of intersection:
4 − 2 cos θ = 6 + 2 cos θ 4-2\cos \theta =6+2\cos \theta 4 − 2 cos θ = 6 + 2 cos θ
4 cos θ = − 2 4\cos \theta=-2 4 cos θ = − 2
cos θ = − 1 2 \cos \theta =-\frac{1}{2} cos θ = − 2 1
θ 1 = 2 π 3 \theta _1=\frac{2\pi}{3} θ 1 = 3 2 π and θ 2 = 4 π 3 \theta _2=\frac{4\pi}{3} θ 2 = 3 4 π
Formula of area of the region bounded by the graph of r = f ( θ ) r=f(\theta ) r = f ( θ ) between the radial lines θ = α \theta =\alpha θ = α and θ = β \theta =\beta θ = β is A = 1 2 ∫ α β f ( θ ) 2 d θ A=\frac{1}{2}\int\limits_{\alpha }^{\beta}f(\theta)^2d\theta A = 2 1 α ∫ β f ( θ ) 2 d θ . Using this formula, we obtain
A = 1 2 ∫ 2 π 3 4 π 3 ( ( 4 − 2 cos θ ) 2 − ( 6 + 2 cos θ ) 2 ) d θ = 1 2 ∫ 2 π 3 4 π 3 ( − 20 − 40 cos θ ) d θ = A=\frac{1}{2}\int\limits _{\frac{2\pi}{3}}^{\frac{4\pi}{3}}\left((4-2\cos \theta)^2-(6+2\cos \theta)^2
\right)d\theta=\frac{1}{2}\int\limits _{\frac{2\pi}{3}}^{\frac{4\pi}{3}}\left(-20-40\cos \theta
\right)d\theta = A = 2 1 3 2 π ∫ 3 4 π ( ( 4 − 2 cos θ ) 2 − ( 6 + 2 cos θ ) 2 ) d θ = 2 1 3 2 π ∫ 3 4 π ( − 20 − 40 cos θ ) d θ =
= − 10 ∫ 2 π 3 4 π 3 ( 1 + 2 cos θ ) d θ = − 10 ( θ + 2 sin θ ) ∣ 2 π 3 4 π 3 = =-10\int\limits _{\frac{2\pi}{3}}^{\frac{4\pi}{3}}\left(1+2\cos \theta
\right)d\theta =-10\left(\theta+2\sin \theta\right)\bigg|^\frac{4\pi}{3}_{\frac{2\pi}{3}}= = − 10 3 2 π ∫ 3 4 π ( 1 + 2 cos θ ) d θ = − 10 ( θ + 2 sin θ ) ∣ ∣ 3 2 π 3 4 π =
= − 10 ( 4 π 3 − 2 ⋅ 3 2 ) + 10 ( 2 π 3 + 2 ⋅ 3 2 ) = 20 3 − 20 π 3 =-10\left(\frac{4\pi}{3}-2\cdot \frac{\sqrt{3}}{2}\right)+10\left(\frac{2\pi}{3}+2\cdot \frac{\sqrt{3}}{2}\right)=20\sqrt{3}-\frac{20\pi}{3} = − 10 ( 3 4 π − 2 ⋅ 2 3 ) + 10 ( 3 2 π + 2 ⋅ 2 3 ) = 20 3 − 3 20 π
Answer: A = 20 3 − 20 π 3 A= 20\sqrt{3}-\frac{20\pi}{3} A = 20 3 − 3 20 π .
Comments