r=4−2cosθ and r=6+2cosθ
Let us find points of intersection:
4−2cosθ=6+2cosθ
4cosθ=−2
cosθ=−21
θ1=32π and θ2=34π
Formula of area of the region bounded by the graph of r=f(θ) between the radial lines θ=α and θ=β is A=21α∫βf(θ)2dθ . Using this formula, we obtain
A=2132π∫34π((4−2cosθ)2−(6+2cosθ)2)dθ=2132π∫34π(−20−40cosθ)dθ=
=−1032π∫34π(1+2cosθ)dθ=−10(θ+2sinθ)∣∣32π34π=
=−10(34π−2⋅23)+10(32π+2⋅23)=203−320π
Answer: A=203−320π .
Comments