Question #176682

Find the area that is inside r=4-2cos∅ and the outside r=6+2cos∅.


1
Expert's answer
2021-04-25T17:14:26-0400

r=42cosθr=4-2\cos \theta and r=6+2cosθr=6+2\cos \theta

Let us find points of intersection:

42cosθ=6+2cosθ4-2\cos \theta =6+2\cos \theta

4cosθ=24\cos \theta=-2

cosθ=12\cos \theta =-\frac{1}{2}

θ1=2π3\theta _1=\frac{2\pi}{3} and θ2=4π3\theta _2=\frac{4\pi}{3}


Formula of area of the region bounded by the graph of r=f(θ)r=f(\theta ) between the radial lines θ=α\theta =\alpha and θ=β\theta =\beta is A=12αβf(θ)2dθA=\frac{1}{2}\int\limits_{\alpha }^{\beta}f(\theta)^2d\theta . Using this formula, we obtain

 A=122π34π3((42cosθ)2(6+2cosθ)2)dθ=122π34π3(2040cosθ)dθ=A=\frac{1}{2}\int\limits _{\frac{2\pi}{3}}^{\frac{4\pi}{3}}\left((4-2\cos \theta)^2-(6+2\cos \theta)^2 \right)d\theta=\frac{1}{2}\int\limits _{\frac{2\pi}{3}}^{\frac{4\pi}{3}}\left(-20-40\cos \theta \right)d\theta =

=102π34π3(1+2cosθ)dθ=10(θ+2sinθ)2π34π3==-10\int\limits _{\frac{2\pi}{3}}^{\frac{4\pi}{3}}\left(1+2\cos \theta \right)d\theta =-10\left(\theta+2\sin \theta\right)\bigg|^\frac{4\pi}{3}_{\frac{2\pi}{3}}=

=10(4π3232)+10(2π3+232)=20320π3=-10\left(\frac{4\pi}{3}-2\cdot \frac{\sqrt{3}}{2}\right)+10\left(\frac{2\pi}{3}+2\cdot \frac{\sqrt{3}}{2}\right)=20\sqrt{3}-\frac{20\pi}{3}



Answer: A=20320π3A= 20\sqrt{3}-\frac{20\pi}{3} .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS