Find the area that is inside r=4-2cos∅ and the outside r=6+2cos∅.
"r=4-2\\cos \\theta" and "r=6+2\\cos \\theta"
Let us find points of intersection:
"4-2\\cos \\theta =6+2\\cos \\theta"
"4\\cos \\theta=-2"
"\\cos \\theta =-\\frac{1}{2}"
"\\theta _1=\\frac{2\\pi}{3}" and "\\theta _2=\\frac{4\\pi}{3}"
Formula of area of the region bounded by the graph of "r=f(\\theta )" between the radial lines "\\theta =\\alpha" and "\\theta =\\beta" is "A=\\frac{1}{2}\\int\\limits_{\\alpha }^{\\beta}f(\\theta)^2d\\theta" . Using this formula, we obtain
"A=\\frac{1}{2}\\int\\limits _{\\frac{2\\pi}{3}}^{\\frac{4\\pi}{3}}\\left((4-2\\cos \\theta)^2-(6+2\\cos \\theta)^2\n\\right)d\\theta=\\frac{1}{2}\\int\\limits _{\\frac{2\\pi}{3}}^{\\frac{4\\pi}{3}}\\left(-20-40\\cos \\theta\n\\right)d\\theta ="
"=-10\\int\\limits _{\\frac{2\\pi}{3}}^{\\frac{4\\pi}{3}}\\left(1+2\\cos \\theta\n\\right)d\\theta =-10\\left(\\theta+2\\sin \\theta\\right)\\bigg|^\\frac{4\\pi}{3}_{\\frac{2\\pi}{3}}="
"=-10\\left(\\frac{4\\pi}{3}-2\\cdot \\frac{\\sqrt{3}}{2}\\right)+10\\left(\\frac{2\\pi}{3}+2\\cdot \\frac{\\sqrt{3}}{2}\\right)=20\\sqrt{3}-\\frac{20\\pi}{3}"
Answer: "A= 20\\sqrt{3}-\\frac{20\\pi}{3}" .
Comments
Leave a comment