Question #176704

With the help of triple integrals, find the volume of the sphere ρ = 2 in a) Rectangular coordianates b) Cylinderical coordiantes c) Spherical coordinates 



1
Expert's answer
2021-03-31T07:32:05-0400

With the help of triple integrals, find the volume of the sphere ρ = 2 in a) Rectangular coordianates b) Cylinderical coordiantes c) Spherical coordinates 

Solution:

a) Rectangular coordinates:


x2+y2+z2=4x^2+y^2+z^2=4

V=22dx4x24x2dy4x2y24x2y2dz=V=\displaystyle\int_{-2}^2dx\int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}}dy\int_{-\sqrt{4-x^2-y^2}}^{\sqrt{4-x^2-y^2}}dz= 802dx04x2dy04x2y2dz=8\displaystyle\int_{0}^2dx\int_{0}^{\sqrt{4-x^2}}dy\int_{0}^{\sqrt{4-x^2-y^2}}dz= 802dx04x24x2y2dy8\displaystyle\int_{0}^2dx\int_{0}^{\sqrt{4-x^2}}\sqrt{4-x^2-y^2}dy

Let's apply the change of variables:

y=4x2sinty=\sqrt{4-x^2}\cdot\sin{t}

dy=4x2costdtdy=\sqrt{4-x^2}\cdot\cos{t}\cdot dt

y=0    t=0y=0 \implies t=0

y=4x2    t=π2y=\sqrt{4-x^2}\implies t=\frac{\pi}{2}

V=802dx0π/24x2(4x2)sin2tV=8\displaystyle\int_{0}^2dx\int_{0}^{\pi/2}\sqrt{4-x^2-(4-x^2)\sin^2{t}}\cdot 4x2costdt=\sqrt{4-x^2}\cos{t}dt=

802dx0π/2(4x2)cos2tdt=8\displaystyle\int_{0}^2dx\int_{0}^{\pi/2}(4-x^2)\cos^2{t}dt= 802dx0π/2(4x2)(1+cos2t)2dt=8\displaystyle\int_{0}^2dx\int_{0}^{\pi/2}(4-x^2)\frac{(1+\cos{2t})}{2}dt= 802dx(4x2)(t+sin2t2)20π/2=8\displaystyle\int_{0}^2dx(4-x^2)\frac{(t+\frac{\sin{2t}}{2})}{2}|_0^{\pi/2}= 2π02(4x2)dx=2π(4xx3/3)02=32π32\pi\displaystyle\int_{0}^2(4-x^2)dx=2\pi(4x-x^3/3)|_0^2=\frac{32\pi}{3}

b) Cylinderical coordiantes:

x=ρcosφx=\rho\cos{\varphi}

y=ρsinφy=\rho\sin{\varphi}

z=zz=z

J=ρJ=\rho

The equation of the sphere:

ρ2+z2=4\rho^2+z^2=4

V=02πdφ02dρ4ρ24ρ2ρdz=V=\displaystyle\int_0^{2\pi}d\varphi\int_0^2d\rho\int_{-\sqrt{4-\rho^2}}^{\sqrt{4-\rho^2}}\rho dz= 202πdφ02dρ04ρ2ρdz=2\displaystyle\int_0^{2\pi}d\varphi\int_0^2d\rho\int_0^{\sqrt{4-\rho^2}}\rho dz= 4π024ρ2ρdρ=4\pi\displaystyle\int_0^2\sqrt{4-\rho^2}\rho d\rho= 2π024ρ2dρ2=4π3(4ρ2)3/202=32π32\pi\displaystyle\int_0^2\sqrt{4-\rho^2} d\rho^2=-\frac{4\pi}{3}\displaystyle(4-\rho^2)^{3/2}|_0^2=\frac{32\pi}{3}

c) Spherical coordinates 

x=rsinθcosφx=r\sin{\theta}\cos{\varphi}

y=rsinθsinφy=r\sin{\theta}\sin{\varphi}

z=rcosθz=r\cos{\theta}

J=r2sinθJ=r^2\sin{\theta}

V=02πdφ0πdθ02r2sinθdr=V=\displaystyle\int_0^{2\pi}d\varphi\int_0^{\pi}d\theta\int_0^2r^2\sin{\theta}dr= 2π0πdθsinθr3302=2\pi\displaystyle\int_0^{\pi}d\theta\sin{\theta}\frac{r^3}{3}|_0^2= 16π30πsinθdθ=\displaystyle\frac{16\pi}{3}\int_0^{\pi}\sin{\theta}d\theta= 16π3cosθ0π=32π3-\displaystyle\frac{16\pi}{3}\cos{\theta}|_0^{\pi}=\frac{32\pi}{3}

Answer: V=32π3.V=\displaystyle\frac{32\pi}{3}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS