Question #176845

a solid of constant density is bounded below by the plane z = 0 , on the sides by the ellptical cylinder x^2 + 4y^2 = 4, and above by the plane z = 2 - x . calculate a) volume b) center of mass c) moment of inertial about x-axis , y-axis and z-axis


1
Expert's answer
2021-03-31T11:06:25-0400

a) The volume

V=dxdydzV=\iiint dxdydz

Now, z=0;x2+4y2=4;z=2xz=0;x^2+4y^2=4;z=2-x

Then, {0z2x,0x44y2,0y1}\text{\textbraceleft}0\eqslantless z \eqslantless2-x, 0\eqslantless x \eqslantless \sqrt{4-4y^2}, 0\eqslantless y\eqslantless1 \text{\textbraceright}

So the volume integral becomes

V=01044y202xdzdxdyV=\int_0^1 \int_0^{\sqrt{4-4y^2}}\int_0^{2-x}dzdxdy

V=01044y2(2x)dxdyV=\int_0^1 \int_0^{\sqrt{4-4y^2}}(2-x)dxdy

V=01[2xx22]044y2dyV=\int_0^1 [2x- \frac{x^2}{2}]_0^{\sqrt{4-4y^2}}dy

V=2[y33+y1y2y+arcsin(y)]01V=2[ \frac{y^3}{3}+y \sqrt{1-y^2}-y+arcsin (y)]_0^1

V=π43V=\pi- \frac{4}{3}


b) Center of mass 

M=220.544y20.544y202xdzdydxM=\int_{-2}^2 \int_{-0.5\sqrt{4-4y^2}}^{0.5\sqrt{4-4y^2}}\int_0^{2-x}dzdydx

M=220.544y20.544y2[2x]dydxM=\int_{-2}^2 \int_{-0.5\sqrt{4-4y^2}}^{0.5\sqrt{4-4y^2}}[2-x]dydx

M=22((2x)44y2)dxM=\int_{-2}^2 ((2-x)\sqrt{4-4y^2})dx

M=02244y2x44y2)dx=4πM=\int_{0}^2 2\sqrt{4-4y^2}-x\sqrt{4-4y^2})dx=4 \pi


Myz=220.544y20.544y202xxdzdydxM_{yz}=\int_{-2}^2 \int_{-0.5\sqrt{4-4y^2}}^{0.5\sqrt{4-4y^2}}\int_0^{2-x}xdzdydx

Myz=220.544y20.544y2x[2x]dydxM_{yz}=\int_{-2}^2 \int_{-0.5\sqrt{4-4y^2}}^{0.5\sqrt{4-4y^2}}x[2-x]dydx

Myz=22((2xx2)44y2)dxM_{yz}=\int_{-2}^2 ((2x-x^2)\sqrt{4-4y^2})dx

Myz=202x244x2dxM_{yz}=-2\int_{0}^2 x^2\sqrt{4-4x^2} dx

Let x=2sinθ;dx=2cosθdθx= 2sin \theta; dx=2cos \theta d\theta

Myz=320π2sin2θcos2θdθ=2πM_{yz}=-32 \int_0 ^{\frac{\pi}{2}}sin^2 \theta cos^2 \theta d \theta =-2 \pi


Mxz=220.544y20.544y202xydzdydxM_{xz}=\int_{-2}^2 \int_{-0.5\sqrt{4-4y^2}}^{0.5\sqrt{4-4y^2}}\int_0^{2-x}ydzdydx

Mxz=220.544y20.544y2y[2x]dydxM_{xz}=\int_{-2}^2 \int_{-0.5\sqrt{4-4y^2}}^{0.5\sqrt{4-4y^2}}y[2-x]dydx

Mxz=2x2[(44y2)22(44y2)22]=0M_{xz}=\frac{2-x}{2}[\frac{(\sqrt{4-4y^2})^2}{2}-\frac{(\sqrt{4-4y^2})^2}{2}] =0


So, the center of mass is

xˉ=MyzM=2π4π=12\bar{x}= \frac{M_{yz}}{M}= \frac{-2 \pi}{4 \pi}= -\frac{1}{2}

yˉ=MxzM=04π=0\bar{y}= \frac{M_{xz}}{M}= \frac{0}{4 \pi}= 0


c) Moment of inertial about the x-axis, y-axis, and z-axis

Myz=220.544y20.544y202xxdzdydxM_{yz}=\int_{-2}^2 \int_{-0.5\sqrt{4-4y^2}}^{0.5\sqrt{4-4y^2}}\int_0^{2-x}xdzdydx

Myz=220.544y20.544y2x[2x]dydxM_{yz}=\int_{-2}^2 \int_{-0.5\sqrt{4-4y^2}}^{0.5\sqrt{4-4y^2}}x[2-x]dydx

Myz=22((2xx2)44y2)dxM_{yz}=\int_{-2}^2 ((2x-x^2)\sqrt{4-4y^2})dx

Myz=202x244x2dxM_{yz}=-2\int_{0}^2 x^2\sqrt{4-4x^2} dx

Let x=2sinθ;dx=2cosθdθx= 2sin \theta; dx=2cos \theta d\theta

Myz=320π2sin2θcos2θdθ=2πM_{yz}=-32 \int_0 ^{\frac{\pi}{2}}sin^2 \theta cos^2 \theta d \theta =-2 \pi


Mxz=220.544y20.544y202xydzdydxM_{xz}=\int_{-2}^2 \int_{-0.5\sqrt{4-4y^2}}^{0.5\sqrt{4-4y^2}}\int_0^{2-x}ydzdydx

Mxz=220.544y20.544y2y[2x]dydxM_{xz}=\int_{-2}^2 \int_{-0.5\sqrt{4-4y^2}}^{0.5\sqrt{4-4y^2}}y[2-x]dydx

Mxz=2x2[(44y2)22(44y2)22]=0M_{xz}=\frac{2-x}{2}[\frac{(\sqrt{4-4y^2})^2}{2}-\frac{(\sqrt{4-4y^2})^2}{2}] =0


Mxy=220.544y20.544y202xzdzdydxM_{xy}=\int_{-2}^2 \int_{-0.5\sqrt{4-4y^2}}^{0.5\sqrt{4-4y^2}}\int_0^{2-x}zdzdydx

Mxy=220.544y20.544y2z[2x]dydxM_{xy}=\int_{-2}^2 \int_{-0.5\sqrt{4-4y^2}}^{0.5\sqrt{4-4y^2}}z[2-x]dydx

Mxy=224x2)dx+14[x2224x2)dx224x2)dx]M_{xy}=\int_{-2}^2 \sqrt{4-x^2})dx+\frac{1}{4}[x^2\int_{-2}^2 \sqrt{4-x^2})dx-\int_{-2}^2 \sqrt{4-x^2})dx]

Mxy=202x244x2dxM_{xy}=-2\int_{0}^2 x^2\sqrt{4-4x^2} dx

Mxy=2π2+4π=5πM_{xy}=2* \frac{\pi}{2}+4 \pi =5 \pi



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS