a solid of constant density is bounded below by the plane z = 0 , on the sides by the ellptical cylinder x^2 + 4y^2 = 4, and above by the plane z = 2 - x . calculate a) volume b) center of mass c) moment of inertial about x-axis , y-axis and z-axis
1
Expert's answer
2021-03-31T11:06:25-0400
a) The volume
V=∭dxdydz
Now, z=0;x2+4y2=4;z=2−x
Then, {0⪕z⪕2−x,0⪕x⪕4−4y2,0⪕y⪕1}
So the volume integral becomes
V=∫01∫04−4y2∫02−xdzdxdy
V=∫01∫04−4y2(2−x)dxdy
V=∫01[2x−2x2]04−4y2dy
V=2[3y3+y1−y2−y+arcsin(y)]01
V=π−34
b) Center of mass
M=∫−22∫−0.54−4y20.54−4y2∫02−xdzdydx
M=∫−22∫−0.54−4y20.54−4y2[2−x]dydx
M=∫−22((2−x)4−4y2)dx
M=∫0224−4y2−x4−4y2)dx=4π
Myz=∫−22∫−0.54−4y20.54−4y2∫02−xxdzdydx
Myz=∫−22∫−0.54−4y20.54−4y2x[2−x]dydx
Myz=∫−22((2x−x2)4−4y2)dx
Myz=−2∫02x24−4x2dx
Let x=2sinθ;dx=2cosθdθ
Myz=−32∫02πsin2θcos2θdθ=−2π
Mxz=∫−22∫−0.54−4y20.54−4y2∫02−xydzdydx
Mxz=∫−22∫−0.54−4y20.54−4y2y[2−x]dydx
Mxz=22−x[2(4−4y2)2−2(4−4y2)2]=0
So, the center of mass is
xˉ=MMyz=4π−2π=−21
yˉ=MMxz=4π0=0
c) Moment of inertial about the x-axis, y-axis, and z-axis
"assignmentexpert.com" is professional group of people in Math subjects! They did assignments in very high level of mathematical modelling in the best quality. Thanks a lot
Comments