a solid of constant density is bounded below by the plane z = 0 , on the sides by the ellptical cylinder x^2 + 4y^2 = 4, and above by the plane z = 2 - x . calculate a) volume b) center of mass c) moment of inertial about x-axis , y-axis and z-axis
a) The volume
"V=\\iiint dxdydz"
Now, "z=0;x^2+4y^2=4;z=2-x"
Then, "\\text{\\textbraceleft}0\\eqslantless z \\eqslantless2-x, 0\\eqslantless x \\eqslantless \\sqrt{4-4y^2}, 0\\eqslantless y\\eqslantless1 \\text{\\textbraceright}"
So the volume integral becomes
"V=\\int_0^1 \\int_0^{\\sqrt{4-4y^2}}\\int_0^{2-x}dzdxdy"
"V=\\int_0^1 \\int_0^{\\sqrt{4-4y^2}}(2-x)dxdy"
"V=\\int_0^1 [2x- \\frac{x^2}{2}]_0^{\\sqrt{4-4y^2}}dy"
"V=2[ \\frac{y^3}{3}+y \\sqrt{1-y^2}-y+arcsin (y)]_0^1"
"V=\\pi- \\frac{4}{3}"
b) Center of mass
"M=\\int_{-2}^2 \\int_{-0.5\\sqrt{4-4y^2}}^{0.5\\sqrt{4-4y^2}}\\int_0^{2-x}dzdydx"
"M=\\int_{-2}^2 \\int_{-0.5\\sqrt{4-4y^2}}^{0.5\\sqrt{4-4y^2}}[2-x]dydx"
"M=\\int_{-2}^2 ((2-x)\\sqrt{4-4y^2})dx"
"M=\\int_{0}^2 2\\sqrt{4-4y^2}-x\\sqrt{4-4y^2})dx=4 \\pi"
"M_{yz}=\\int_{-2}^2 \\int_{-0.5\\sqrt{4-4y^2}}^{0.5\\sqrt{4-4y^2}}\\int_0^{2-x}xdzdydx"
"M_{yz}=\\int_{-2}^2 \\int_{-0.5\\sqrt{4-4y^2}}^{0.5\\sqrt{4-4y^2}}x[2-x]dydx"
"M_{yz}=\\int_{-2}^2 ((2x-x^2)\\sqrt{4-4y^2})dx"
"M_{yz}=-2\\int_{0}^2 x^2\\sqrt{4-4x^2} dx"
Let "x= 2sin \\theta; dx=2cos \\theta d\\theta"
"M_{yz}=-32 \\int_0 ^{\\frac{\\pi}{2}}sin^2 \\theta cos^2 \\theta d \\theta =-2 \\pi"
"M_{xz}=\\int_{-2}^2 \\int_{-0.5\\sqrt{4-4y^2}}^{0.5\\sqrt{4-4y^2}}\\int_0^{2-x}ydzdydx"
"M_{xz}=\\int_{-2}^2 \\int_{-0.5\\sqrt{4-4y^2}}^{0.5\\sqrt{4-4y^2}}y[2-x]dydx"
"M_{xz}=\\frac{2-x}{2}[\\frac{(\\sqrt{4-4y^2})^2}{2}-\\frac{(\\sqrt{4-4y^2})^2}{2}] =0"
So, the center of mass is
"\\bar{x}= \\frac{M_{yz}}{M}= \\frac{-2 \\pi}{4 \\pi}= -\\frac{1}{2}"
"\\bar{y}= \\frac{M_{xz}}{M}= \\frac{0}{4 \\pi}= 0"
c) Moment of inertial about the x-axis, y-axis, and z-axis
"M_{yz}=\\int_{-2}^2 \\int_{-0.5\\sqrt{4-4y^2}}^{0.5\\sqrt{4-4y^2}}\\int_0^{2-x}xdzdydx"
"M_{yz}=\\int_{-2}^2 \\int_{-0.5\\sqrt{4-4y^2}}^{0.5\\sqrt{4-4y^2}}x[2-x]dydx"
"M_{yz}=\\int_{-2}^2 ((2x-x^2)\\sqrt{4-4y^2})dx"
"M_{yz}=-2\\int_{0}^2 x^2\\sqrt{4-4x^2} dx"
Let "x= 2sin \\theta; dx=2cos \\theta d\\theta"
"M_{yz}=-32 \\int_0 ^{\\frac{\\pi}{2}}sin^2 \\theta cos^2 \\theta d \\theta =-2 \\pi"
"M_{xz}=\\int_{-2}^2 \\int_{-0.5\\sqrt{4-4y^2}}^{0.5\\sqrt{4-4y^2}}\\int_0^{2-x}ydzdydx"
"M_{xz}=\\int_{-2}^2 \\int_{-0.5\\sqrt{4-4y^2}}^{0.5\\sqrt{4-4y^2}}y[2-x]dydx"
"M_{xz}=\\frac{2-x}{2}[\\frac{(\\sqrt{4-4y^2})^2}{2}-\\frac{(\\sqrt{4-4y^2})^2}{2}] =0"
"M_{xy}=\\int_{-2}^2 \\int_{-0.5\\sqrt{4-4y^2}}^{0.5\\sqrt{4-4y^2}}\\int_0^{2-x}zdzdydx"
"M_{xy}=\\int_{-2}^2 \\int_{-0.5\\sqrt{4-4y^2}}^{0.5\\sqrt{4-4y^2}}z[2-x]dydx"
"M_{xy}=\\int_{-2}^2 \\sqrt{4-x^2})dx+\\frac{1}{4}[x^2\\int_{-2}^2 \\sqrt{4-x^2})dx-\\int_{-2}^2 \\sqrt{4-x^2})dx]"
"M_{xy}=-2\\int_{0}^2 x^2\\sqrt{4-4x^2} dx"
"M_{xy}=2* \\frac{\\pi}{2}+4 \\pi =5 \\pi"
Comments
Leave a comment