∫ x d x 25 + 16 x 4 \displaystyle\int\frac{xdx}{25+16x^4} ∫ 25 + 16 x 4 x d x
Note that if
d ( x 2 ) = ( x 2 ) ′ d x = 2 x d x d(x^2)=(x^2)'dx=2xdx d ( x 2 ) = ( x 2 ) ′ d x = 2 x d x
then
x d x = 1 2 ⋅ d ( x 2 ) xdx=\dfrac{1}{2}\cdot d(x^2) x d x = 2 1 ⋅ d ( x 2 )
∫ x d x 25 + 16 x 4 = \displaystyle\int\frac{xdx}{25+16x^4}= ∫ 25 + 16 x 4 x d x =
∫ 1 2 ⋅ d ( x 2 ) 25 + 16 x 4 = \displaystyle\int\frac{\frac{1}{2}\cdot d(x^2)}{25+16x^4}= ∫ 25 + 16 x 4 2 1 ⋅ d ( x 2 ) =
1 2 ⋅ ∫ d ( x 2 ) 25 + 16 x 4 = \displaystyle\frac{1}{2}\cdot \int\frac{d(x^2)}{25+16x^4}= 2 1 ⋅ ∫ 25 + 16 x 4 d ( x 2 ) =
1 2 ⋅ ∫ d ( x 2 ) 25 + 16 ( x 2 ) 2 = \displaystyle\frac{1}{2}\cdot \int\frac{d(x^2)}{25+16(x^2)^2}= 2 1 ⋅ ∫ 25 + 16 ( x 2 ) 2 d ( x 2 ) =
1 2 ⋅ ∫ d ( x 2 ) 16 ⋅ ( 25 16 + ( x 2 ) 2 ) = \displaystyle\frac{1}{2}\cdot \int\frac{d(x^2)}{16\cdot(\frac{25}{16}+(x^2)^2)}= 2 1 ⋅ ∫ 16 ⋅ ( 16 25 + ( x 2 ) 2 ) d ( x 2 ) =
1 2 ⋅ 16 ⋅ ∫ d ( x 2 ) 25 16 + ( x 2 ) 2 = \displaystyle\frac{1}{2\cdot16}\cdot \int\frac{d(x^2)}{\frac{25}{16}+(x^2)^2}= 2 ⋅ 16 1 ⋅ ∫ 16 25 + ( x 2 ) 2 d ( x 2 ) =
1 32 ⋅ ∫ d ( x 2 ) 25 16 + ( x 2 ) 2 = \displaystyle\frac{1}{32}\cdot \int\frac{d(x^2)}{\frac{25}{16}+(x^2)^2}= 32 1 ⋅ ∫ 16 25 + ( x 2 ) 2 d ( x 2 ) = use antiderivative ∫ d t a 2 + t 2 = 1 a arctan ( t a ) + c \displaystyle\int\frac{dt}{a^2+t^2}=\frac{1}{a}\arctan\left(\frac{t}{a}\right)+c ∫ a 2 + t 2 d t = a 1 arctan ( a t ) + c
substituting t = x 2 t=x^2 t = x 2 and a 2 = 25 16 a^2=\dfrac{25}{16} a 2 = 16 25
1 32 ⋅ 1 25 16 ⋅ arctan ( x 2 25 16 ) + c = \displaystyle\frac{1}{32}\cdot\frac{1}{\sqrt{\frac{25}{16}}}\cdot\arctan\left(\frac{x^2}{\sqrt{\frac{25}{16}}}\right)+c= 32 1 ⋅ 16 25 1 ⋅ arctan ⎝ ⎛ 16 25 x 2 ⎠ ⎞ + c =
1 32 ⋅ 1 5 4 ⋅ arctan ( x 2 5 4 ) + c = \displaystyle\frac{1}{32}\cdot\frac{1}{\frac{5}{4}}\cdot\arctan\left(\frac{x^2}{\frac{5}{4}}\right)+c= 32 1 ⋅ 4 5 1 ⋅ arctan ( 4 5 x 2 ) + c =
1 32 ⋅ 4 5 ⋅ arctan ( 4 x 2 5 ) + c = \displaystyle\frac{1}{32}\cdot\frac{4}{5}\cdot\arctan\left(\frac{4x^2}{5}\right)+c= 32 1 ⋅ 5 4 ⋅ arctan ( 5 4 x 2 ) + c =
1 8 ⋅ 1 5 ⋅ arctan ( 4 x 2 5 ) + c = \displaystyle\frac{1}{8}\cdot\frac{1}{5}\cdot\arctan\left(\frac{4x^2}{5}\right)+c= 8 1 ⋅ 5 1 ⋅ arctan ( 5 4 x 2 ) + c =
1 40 ⋅ arctan ( 4 x 2 5 ) + c \displaystyle\frac{1}{40}\cdot\arctan\left(\frac{4x^2}{5}\right)+c 40 1 ⋅ arctan ( 5 4 x 2 ) + c
Comments