∫25+16x4xdx
Note that if
d(x2)=(x2)′dx=2xdx
then
xdx=21⋅d(x2)
∫25+16x4xdx=
∫25+16x421⋅d(x2)=
21⋅∫25+16x4d(x2)=
21⋅∫25+16(x2)2d(x2)=
21⋅∫16⋅(1625+(x2)2)d(x2)=
2⋅161⋅∫1625+(x2)2d(x2)=
321⋅∫1625+(x2)2d(x2)= use antiderivative ∫a2+t2dt=a1arctan(at)+c
substituting t=x2 and a2=1625
321⋅16251⋅arctan⎝⎛1625x2⎠⎞+c=
321⋅451⋅arctan(45x2)+c=
321⋅54⋅arctan(54x2)+c=
81⋅51⋅arctan(54x2)+c=
401⋅arctan(54x2)+c
Comments
Leave a comment