Integrals Giving Inverse Trigonometric Functions
∫(xdx)/(25+16x⁴)
"\\displaystyle\\int\\frac{xdx}{25+16x^4}"
Note that if
"d(x^2)=(x^2)'dx=2xdx"
then
"xdx=\\dfrac{1}{2}\\cdot d(x^2)"
"\\displaystyle\\int\\frac{xdx}{25+16x^4}="
"\\displaystyle\\int\\frac{\\frac{1}{2}\\cdot d(x^2)}{25+16x^4}="
"\\displaystyle\\frac{1}{2}\\cdot \\int\\frac{d(x^2)}{25+16x^4}="
"\\displaystyle\\frac{1}{2}\\cdot \\int\\frac{d(x^2)}{25+16(x^2)^2}="
"\\displaystyle\\frac{1}{2}\\cdot \\int\\frac{d(x^2)}{16\\cdot(\\frac{25}{16}+(x^2)^2)}="
"\\displaystyle\\frac{1}{2\\cdot16}\\cdot \\int\\frac{d(x^2)}{\\frac{25}{16}+(x^2)^2}="
"\\displaystyle\\frac{1}{32}\\cdot \\int\\frac{d(x^2)}{\\frac{25}{16}+(x^2)^2}=" use antiderivative "\\displaystyle\\int\\frac{dt}{a^2+t^2}=\\frac{1}{a}\\arctan\\left(\\frac{t}{a}\\right)+c"
substituting "t=x^2" and "a^2=\\dfrac{25}{16}"
"\\displaystyle\\frac{1}{32}\\cdot\\frac{1}{\\sqrt{\\frac{25}{16}}}\\cdot\\arctan\\left(\\frac{x^2}{\\sqrt{\\frac{25}{16}}}\\right)+c="
"\\displaystyle\\frac{1}{32}\\cdot\\frac{1}{\\frac{5}{4}}\\cdot\\arctan\\left(\\frac{x^2}{\\frac{5}{4}}\\right)+c="
"\\displaystyle\\frac{1}{32}\\cdot\\frac{4}{5}\\cdot\\arctan\\left(\\frac{4x^2}{5}\\right)+c="
"\\displaystyle\\frac{1}{8}\\cdot\\frac{1}{5}\\cdot\\arctan\\left(\\frac{4x^2}{5}\\right)+c="
"\\displaystyle\\frac{1}{40}\\cdot\\arctan\\left(\\frac{4x^2}{5}\\right)+c"
Comments
Leave a comment