Answer to Question #176987 in Calculus for Phyroe

Question #176987

Integrals Giving Inverse Trigonometric Functions


∫(xdx)/(25+16x⁴)


1
Expert's answer
2021-04-15T07:40:28-0400

xdx25+16x4\displaystyle\int\frac{xdx}{25+16x^4}


Note that if

d(x2)=(x2)dx=2xdxd(x^2)=(x^2)'dx=2xdx

then

xdx=12d(x2)xdx=\dfrac{1}{2}\cdot d(x^2)


xdx25+16x4=\displaystyle\int\frac{xdx}{25+16x^4}=


12d(x2)25+16x4=\displaystyle\int\frac{\frac{1}{2}\cdot d(x^2)}{25+16x^4}=


12d(x2)25+16x4=\displaystyle\frac{1}{2}\cdot \int\frac{d(x^2)}{25+16x^4}=


12d(x2)25+16(x2)2=\displaystyle\frac{1}{2}\cdot \int\frac{d(x^2)}{25+16(x^2)^2}=


12d(x2)16(2516+(x2)2)=\displaystyle\frac{1}{2}\cdot \int\frac{d(x^2)}{16\cdot(\frac{25}{16}+(x^2)^2)}=


1216d(x2)2516+(x2)2=\displaystyle\frac{1}{2\cdot16}\cdot \int\frac{d(x^2)}{\frac{25}{16}+(x^2)^2}=


132d(x2)2516+(x2)2=\displaystyle\frac{1}{32}\cdot \int\frac{d(x^2)}{\frac{25}{16}+(x^2)^2}= use antiderivative dta2+t2=1aarctan(ta)+c\displaystyle\int\frac{dt}{a^2+t^2}=\frac{1}{a}\arctan\left(\frac{t}{a}\right)+c


substituting t=x2t=x^2 and a2=2516a^2=\dfrac{25}{16}


13212516arctan(x22516)+c=\displaystyle\frac{1}{32}\cdot\frac{1}{\sqrt{\frac{25}{16}}}\cdot\arctan\left(\frac{x^2}{\sqrt{\frac{25}{16}}}\right)+c=


132154arctan(x254)+c=\displaystyle\frac{1}{32}\cdot\frac{1}{\frac{5}{4}}\cdot\arctan\left(\frac{x^2}{\frac{5}{4}}\right)+c=


13245arctan(4x25)+c=\displaystyle\frac{1}{32}\cdot\frac{4}{5}\cdot\arctan\left(\frac{4x^2}{5}\right)+c=


1815arctan(4x25)+c=\displaystyle\frac{1}{8}\cdot\frac{1}{5}\cdot\arctan\left(\frac{4x^2}{5}\right)+c=


140arctan(4x25)+c\displaystyle\frac{1}{40}\cdot\arctan\left(\frac{4x^2}{5}\right)+c




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment