Integrals Giving Inverse Trigonometric Functions
∫(e^x dx)/√(1-e^(2x))
Put ex=ue^x=uex=u, then x=lnu,dx=duux=ln u, dx = \frac{du}{u}x=lnu,dx=udu. Also, e2x=(ex)2=u2e^{2x}=(e^x)^2=u^2e2x=(ex)2=u2. Hence,
Answer: sin−1ex+Csin^{-1}e^x +Csin−1ex+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments