Question #176984

Integrals Giving Inverse Trigonometric Functions


∫(e^x dx)/√(1-e^(2x))


1
Expert's answer
2021-04-15T07:40:03-0400

Put ex=ue^x=u, then x=lnu,dx=duux=ln u, dx = \frac{du}{u}. Also, e2x=(ex)2=u2e^{2x}=(e^x)^2=u^2. Hence,


exdx1e2x=uduu1u2=du1u2=\intop \frac{e^x dx}{\sqrt{1-e^{2x}}}= \intop \frac{u\cdot \frac{du}{u}}{\sqrt{1-u^2}}=\intop \frac{du}{\sqrt{1-u^2}}=

=sin1u+C=sin1ex+C=sin^{-1}u +C=sin^{-1}e^x +C

Answer: sin1ex+Csin^{-1}e^x +C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS