Question #176990

Integrals Giving Inverse Trigonometric Functions


1. ∫(xdx)/√(3-2x-x²)


2. ∫(dy)/(16+y²) from -4 to 4


1
Expert's answer
2021-04-14T13:01:35-0400

1)

x32xx2dx\int{\frac{x}{\sqrt{3-2x-x^2}}dx}

focus on the denominator

32xx23-2x-x^2

(1)(x2+2x3)\left(-1\right)\left(x^2+2x-3\right)

(1)(x2+2x+113)\left(-1\right)\left(x^2+2x+1-1-3\right)

(1)((x+1)24)\left(-1\right)\left(\left(x+1\right)^2-4\right)

4(x+1)24-\left(x+1\right)^2

x4(x+1)2dx\int{\frac{x}{\sqrt{4-\left(x+1\right)^2}}dx}

x+114(x+1)2dx\int{\frac{x+1-1}{\sqrt{4-\left(x+1\right)^2}}dx}

x+14(x+1)2dx 14(x+1)2dx \int{\frac{x+1}{\sqrt{4-\left(x+1\right)^2}}dx}-\ \int{\frac{1}{\sqrt{4-\left(x+1\right)^2}}dx\ }

let u=4(x+1)2let\ u=\sqrt{4-\left(x+1\right)^2}

du= 2(x+1)4(x+1)2dx=>dx= 4(x+1)22(x+1)dudu=\ -\frac{2\left(x+1\right)}{\sqrt{4-\left(x+1\right)^2}}dx=>dx=\ -\frac{\sqrt{4-\left(x+1\right)^2}}{2\left(x+1\right)}du

x+14(x+1)2dx= 12du=u2+c= 4(x+1)22+c\int{\frac{x+1}{\sqrt{4-\left(x+1\right)^2}}dx}=\ -\frac{1}{2}\int d u=-\frac{u}{2}+c=\ -\frac{\sqrt{4-\left(x+1\right)^2}}{2}+c


let v=x+1=>dv=dxlet\ v=x+1=>dv=dx

14(x+1)2dx = 122v2dv=sin1(v2)+d=sin1(x+12)+d\int{\frac{1}{\sqrt{4-\left(x+1\right)^2}}dx\ }=\ \int{\frac{1}{\sqrt{2^2-v^2}}dv=\sin^{-1}\left(\frac{v}{2}\right)}+d=\sin^{-1}{\left(\frac{x+1}{2}\right)}+d



4(x+1)22 sin1(x+12)+K-\frac{\sqrt{4-\left(x+1\right)^2}}{2}-\ \sin^{-1}{\left(\frac{x+1}{2}\right)}+K


2)

44dy16+y2\int_{-4}^{4}\frac{dy}{16+y^2}

44dy42+y2\int_{-4}^{4}\frac{dy}{4^2+y^2}

14tan1(y4)  (4, 4)\frac{1}{4}\tan^{-1}{\left(\frac{y}{4}\right)}\ \ \left(-4,\ 4\right)

14(tan1(1)tan1(1))\frac{1}{4}\left(\tan^{-1}{\left(1\right)-\tan^{-1}{\left(-1\right)}}\right)

14(π4π4)=π8\frac{1}{4}\left(\frac{\pi}{4}--\frac{\pi}{4}\right)=\frac{\pi}{8}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS