1)
∫3−2x−x2xdx
focus on the denominator
3−2x−x2
(−1)(x2+2x−3)
(−1)(x2+2x+1−1−3)
(−1)((x+1)2−4)
4−(x+1)2
∫4−(x+1)2xdx
∫4−(x+1)2x+1−1dx
∫4−(x+1)2x+1dx− ∫4−(x+1)21dx
let u=4−(x+1)2
du= −4−(x+1)22(x+1)dx=>dx= −2(x+1)4−(x+1)2du
∫4−(x+1)2x+1dx= −21∫du=−2u+c= −24−(x+1)2+c
let v=x+1=>dv=dx
∫4−(x+1)21dx = ∫22−v21dv=sin−1(2v)+d=sin−1(2x+1)+d
−24−(x+1)2− sin−1(2x+1)+K
2)
∫−4416+y2dy
∫−4442+y2dy
41tan−1(4y) (−4, 4)
41(tan−1(1)−tan−1(−1))
41(4π−−4π)=8π
Comments