Integrals Giving Inverse Trigonometric Functions
1. ∫(xdx)/√(3-2x-x²)
2. ∫(dy)/(16+y²) from -4 to 4
1)
"\\int{\\frac{x}{\\sqrt{3-2x-x^2}}dx}"
focus on the denominator
"3-2x-x^2"
"\\left(-1\\right)\\left(x^2+2x-3\\right)"
"\\left(-1\\right)\\left(x^2+2x+1-1-3\\right)"
"\\left(-1\\right)\\left(\\left(x+1\\right)^2-4\\right)"
"4-\\left(x+1\\right)^2"
"\\int{\\frac{x}{\\sqrt{4-\\left(x+1\\right)^2}}dx}"
"\\int{\\frac{x+1-1}{\\sqrt{4-\\left(x+1\\right)^2}}dx}"
"\\int{\\frac{x+1}{\\sqrt{4-\\left(x+1\\right)^2}}dx}-\\ \\int{\\frac{1}{\\sqrt{4-\\left(x+1\\right)^2}}dx\\ }"
"let\\ u=\\sqrt{4-\\left(x+1\\right)^2}"
"du=\\ -\\frac{2\\left(x+1\\right)}{\\sqrt{4-\\left(x+1\\right)^2}}dx=>dx=\\ -\\frac{\\sqrt{4-\\left(x+1\\right)^2}}{2\\left(x+1\\right)}du"
"\\int{\\frac{x+1}{\\sqrt{4-\\left(x+1\\right)^2}}dx}=\\ -\\frac{1}{2}\\int d u=-\\frac{u}{2}+c=\\ -\\frac{\\sqrt{4-\\left(x+1\\right)^2}}{2}+c"
"let\\ v=x+1=>dv=dx"
"\\int{\\frac{1}{\\sqrt{4-\\left(x+1\\right)^2}}dx\\ }=\\ \\int{\\frac{1}{\\sqrt{2^2-v^2}}dv=\\sin^{-1}\\left(\\frac{v}{2}\\right)}+d=\\sin^{-1}{\\left(\\frac{x+1}{2}\\right)}+d"
"-\\frac{\\sqrt{4-\\left(x+1\\right)^2}}{2}-\\ \\sin^{-1}{\\left(\\frac{x+1}{2}\\right)}+K"
2)
"\\int_{-4}^{4}\\frac{dy}{16+y^2}"
"\\int_{-4}^{4}\\frac{dy}{4^2+y^2}"
"\\frac{1}{4}\\tan^{-1}{\\left(\\frac{y}{4}\\right)}\\ \\ \\left(-4,\\ 4\\right)"
"\\frac{1}{4}\\left(\\tan^{-1}{\\left(1\\right)-\\tan^{-1}{\\left(-1\\right)}}\\right)"
"\\frac{1}{4}\\left(\\frac{\\pi}{4}--\\frac{\\pi}{4}\\right)=\\frac{\\pi}{8}"
Comments
Leave a comment