Integrals Giving Inverse Trigonometric Functions
1. ∫(dx)/(x²+4x+5)
2. ∫(dt)/(t²-t+2)
1)x2+4x+5=(x+2)2+11)x^2 + 4x +5 = (x+2)^2 +11)x2+4x+5=(x+2)2+1
So we have that
∫dxx2+4x+5=∫dx(x+2)2+1=arctan(x+2)+c\int \dfrac{dx}{x^2 +4x+5} = \int \dfrac{dx}{(x+2)^2 +1} = \arctan (x+2) + c∫x2+4x+5dx=∫(x+2)2+1dx=arctan(x+2)+c
where c is a constant
2) t2−t+2=(t−12)2+74=(t−12)2+(72)2t^2-t+2 = (t-\frac{1}{2})^2 + \frac{7}{4} = (t-\frac{1}{2})^2 + (\frac{\sqrt7}{2})^2t2−t+2=(t−21)2+47=(t−21)2+(27)2
∫dtt2−t+2=∫dt(t−12)2+(72)2=172arctan(t−1272)+b\int \dfrac{dt}{t^2-t+2} = \int \dfrac{dt}{(t-\frac{1}{2})^2 + (\frac{\sqrt7}{2})^2} = \frac{1}{\frac{\sqrt7}{2}} \arctan(\frac{t- \frac{1}{2}}{\frac{\sqrt7}{2}}) + b∫t2−t+2dt=∫(t−21)2+(27)2dt=271arctan(27t−21)+b = 27arctan(2t−17)+b\frac{2}{\sqrt7} \arctan(\frac{2t-1}{\sqrt7}) + b72arctan(72t−1)+b
where b is a constant
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments