1 ) x 2 + 4 x + 5 = ( x + 2 ) 2 + 1 1)x^2 + 4x +5 = (x+2)^2 +1 1 ) x 2 + 4 x + 5 = ( x + 2 ) 2 + 1
So we have that
∫ d x x 2 + 4 x + 5 = ∫ d x ( x + 2 ) 2 + 1 = arctan ( x + 2 ) + c \int \dfrac{dx}{x^2 +4x+5} = \int \dfrac{dx}{(x+2)^2 +1} = \arctan (x+2) + c ∫ x 2 + 4 x + 5 d x = ∫ ( x + 2 ) 2 + 1 d x = arctan ( x + 2 ) + c
where c is a constant
2) t 2 − t + 2 = ( t − 1 2 ) 2 + 7 4 = ( t − 1 2 ) 2 + ( 7 2 ) 2 t^2-t+2 = (t-\frac{1}{2})^2 + \frac{7}{4} = (t-\frac{1}{2})^2 + (\frac{\sqrt7}{2})^2 t 2 − t + 2 = ( t − 2 1 ) 2 + 4 7 = ( t − 2 1 ) 2 + ( 2 7 ) 2
So we have that
∫ d t t 2 − t + 2 = ∫ d t ( t − 1 2 ) 2 + ( 7 2 ) 2 = 1 7 2 arctan ( t − 1 2 7 2 ) + b \int \dfrac{dt}{t^2-t+2} = \int \dfrac{dt}{(t-\frac{1}{2})^2 + (\frac{\sqrt7}{2})^2} = \frac{1}{\frac{\sqrt7}{2}} \arctan(\frac{t- \frac{1}{2}}{\frac{\sqrt7}{2}}) + b ∫ t 2 − t + 2 d t = ∫ ( t − 2 1 ) 2 + ( 2 7 ) 2 d t = 2 7 1 arctan ( 2 7 t − 2 1 ) + b = 2 7 arctan ( 2 t − 1 7 ) + b \frac{2}{\sqrt7} \arctan(\frac{2t-1}{\sqrt7}) + b 7 2 arctan ( 7 2 t − 1 ) + b
where b is a constant
Comments