Integrals Giving Inverse Trigonometric Functions
1. ∫(dx)/(x²+4x+5)
2. ∫(dt)/(t²-t+2)
"1)x^2 + 4x +5 = (x+2)^2 +1"
So we have that
"\\int \\dfrac{dx}{x^2 +4x+5} = \\int \\dfrac{dx}{(x+2)^2 +1} = \\arctan (x+2) + c"
where c is a constant
2) "t^2-t+2 = (t-\\frac{1}{2})^2 + \\frac{7}{4} = (t-\\frac{1}{2})^2 + (\\frac{\\sqrt7}{2})^2"
So we have that
"\\int \\dfrac{dt}{t^2-t+2} = \\int \\dfrac{dt}{(t-\\frac{1}{2})^2 + (\\frac{\\sqrt7}{2})^2} = \\frac{1}{\\frac{\\sqrt7}{2}} \\arctan(\\frac{t- \\frac{1}{2}}{\\frac{\\sqrt7}{2}}) + b" = "\\frac{2}{\\sqrt7} \\arctan(\\frac{2t-1}{\\sqrt7}) + b"
where b is a constant
Comments
Leave a comment