Question #176988

Integrals Giving Inverse Trigonometric Functions


1. ∫(dx)/(x²+4x+5)


2. ∫(dt)/(t²-t+2)




1
Expert's answer
2021-04-13T15:43:59-0400

1)x2+4x+5=(x+2)2+11)x^2 + 4x +5 = (x+2)^2 +1

So we have that

dxx2+4x+5=dx(x+2)2+1=arctan(x+2)+c\int \dfrac{dx}{x^2 +4x+5} = \int \dfrac{dx}{(x+2)^2 +1} = \arctan (x+2) + c

where c is a constant

2) t2t+2=(t12)2+74=(t12)2+(72)2t^2-t+2 = (t-\frac{1}{2})^2 + \frac{7}{4} = (t-\frac{1}{2})^2 + (\frac{\sqrt7}{2})^2

So we have that

dtt2t+2=dt(t12)2+(72)2=172arctan(t1272)+b\int \dfrac{dt}{t^2-t+2} = \int \dfrac{dt}{(t-\frac{1}{2})^2 + (\frac{\sqrt7}{2})^2} = \frac{1}{\frac{\sqrt7}{2}} \arctan(\frac{t- \frac{1}{2}}{\frac{\sqrt7}{2}}) + b = 27arctan(2t17)+b\frac{2}{\sqrt7} \arctan(\frac{2t-1}{\sqrt7}) + b

where b is a constant


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS