Newtonβs laws of cooling proposes that the rate of change of temperature is proportional to the temperature difference to the ambient (room) temperature. And can be modelled using the equation: ππππ‘=βπ(πβππ) This can also be written as: πππβππ=βπ ππ‘
Where: π=ππππππππ‘π’ππ ππ πππ‘πππππ ππ=π΄ππππππ‘ (ππππ) π‘πππππππ‘π’ππ π=π΄ πππππππ ππππ π‘πππ‘ a) Integrate both sides of the equation and show that the temperature difference is given by: (πβππ)=πΆππβππ‘
GIVEN:
T= temperature of material
Ta= temperature of room or surrounding
k=cooling constant
solution:
ππ/ππ‘=βπ(πβππ),
ππ/(πβππ)=βπππ‘.
We have to integrate both sides:
"\\int \\cfrac{dT}{T-T_a} = -\\int kdt"
"ln\\,|T - T_a| = -kt + ln\\,C_0"
"T\u2212T \na\n\u200b\t\n =e^{ \n\u2212kt+lnC_ \n0}\n\u200b"
taking anti (ln)
"T\u2212T \na\n\u200b\t\n =e^{ \nlnC \n0}\n\u200b\t\n \n e ^{\n\u2212kt}"
hence by base change property,
"\\boxed{T - T_a = C_0\\,e^{-kt}}"
hence we proved.
Comments
Leave a comment