Question #167836

Find f'(x) of f(x)= sin{x/(x - sin[x/(x-sinx)])}


1
Expert's answer
2021-03-07T17:31:05-0500

Solution:

f(x)=sin{xxsin[xxsinx]}f(x)=\sin\{{\dfrac{x}{x-\sin[\dfrac{x}{x-\sin x}]}}\}

On differentiating both sides w.r.t. xx,

f(x)=cos{xxsin[xxsinx]}×{xxsin[xxsinx]}f(x)=\cos\{{\dfrac{x}{x-\sin[\dfrac{x}{x-\sin x}]}}\}\times \{{\dfrac{x}{x-\sin[\dfrac{x}{x-\sin x}]}}\}' [using chain rule]

=cos{xxsin[xxsinx]}×{(xsin[xxsinx])(x)x(xsin[xxsinx])(xsin[xxsinx])2}=\cos\{{\dfrac{x}{x-\sin[\dfrac{x}{x-\sin x}]}}\}\times \{{\dfrac{(x-\sin[\dfrac{x}{x-\sin x}])(x)'-x(x-\sin[\dfrac{x}{x-\sin x}])'}{(x-\sin[\dfrac{x}{x-\sin x}])^2}}\} [Using quotient rule]

=cos{xxsin[xxsinx]}×{(xsin[xxsinx])x(1cos[xxsinx])[xxsinx](xsin[xxsinx])2}=\cos\{{\dfrac{x}{x-\sin[\dfrac{x}{x-\sin x}]}}\}\times \{{\dfrac{(x-\sin[\dfrac{x}{x-\sin x}])-x(1-\cos[\dfrac{x}{x-\sin x}])[\dfrac{x}{x-\sin x}]'}{(x-\sin[\dfrac{x}{x-\sin x}])^2}}\}

=cos{xxsin[xxsinx]}×{(xsin[xxsinx])x(1cos[xxsinx])[(xsinx)x(1cosx)(xsinx)2](xsin[xxsinx])2}=\cos\{{\dfrac{x}{x-\sin[\dfrac{x}{x-\sin x}]}}\}\times \{{\dfrac{(x-\sin[\dfrac{x}{x-\sin x}])-x(1-\cos[\dfrac{x}{x-\sin x}])[\dfrac{(x-\sin x)-x(1-\cos x)}{(x-\sin x)^2}]}{(x-\sin[\dfrac{x}{x-\sin x}])^2}}\}

=cos{xxsin[xxsinx]}×{(xsin[xxsinx])x(1cos[xxsinx])[xcosxsinx(xsinx)2](xsin[xxsinx])2}=\cos\{{\dfrac{x}{x-\sin[\dfrac{x}{x-\sin x}]}}\}\times \{{\dfrac{(x-\sin[\dfrac{x}{x-\sin x}])-x(1-\cos[\dfrac{x}{x-\sin x}])[\dfrac{x\cos x-\sin x}{(x-\sin x)^2}]}{(x-\sin[\dfrac{x}{x-\sin x}])^2}}\}

This is our required f(x)f'(x).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS