Find f'(x) of f(x)= sin{x/(x - sin[x/(x-sinx)])}
Solution:
"f(x)=\\sin\\{{\\dfrac{x}{x-\\sin[\\dfrac{x}{x-\\sin x}]}}\\}"
On differentiating both sides w.r.t. "x",
"f(x)=\\cos\\{{\\dfrac{x}{x-\\sin[\\dfrac{x}{x-\\sin x}]}}\\}\\times \\{{\\dfrac{x}{x-\\sin[\\dfrac{x}{x-\\sin x}]}}\\}'" [using chain rule]
"=\\cos\\{{\\dfrac{x}{x-\\sin[\\dfrac{x}{x-\\sin x}]}}\\}\\times \\{{\\dfrac{(x-\\sin[\\dfrac{x}{x-\\sin x}])(x)'-x(x-\\sin[\\dfrac{x}{x-\\sin x}])'}{(x-\\sin[\\dfrac{x}{x-\\sin x}])^2}}\\}" [Using quotient rule]
"=\\cos\\{{\\dfrac{x}{x-\\sin[\\dfrac{x}{x-\\sin x}]}}\\}\\times \\{{\\dfrac{(x-\\sin[\\dfrac{x}{x-\\sin x}])-x(1-\\cos[\\dfrac{x}{x-\\sin x}])[\\dfrac{x}{x-\\sin x}]'}{(x-\\sin[\\dfrac{x}{x-\\sin x}])^2}}\\}"
"=\\cos\\{{\\dfrac{x}{x-\\sin[\\dfrac{x}{x-\\sin x}]}}\\}\\times \\{{\\dfrac{(x-\\sin[\\dfrac{x}{x-\\sin x}])-x(1-\\cos[\\dfrac{x}{x-\\sin x}])[\\dfrac{(x-\\sin x)-x(1-\\cos x)}{(x-\\sin x)^2}]}{(x-\\sin[\\dfrac{x}{x-\\sin x}])^2}}\\}"
"=\\cos\\{{\\dfrac{x}{x-\\sin[\\dfrac{x}{x-\\sin x}]}}\\}\\times \\{{\\dfrac{(x-\\sin[\\dfrac{x}{x-\\sin x}])-x(1-\\cos[\\dfrac{x}{x-\\sin x}])[\\dfrac{x\\cos x-\\sin x}{(x-\\sin x)^2}]}{(x-\\sin[\\dfrac{x}{x-\\sin x}])^2}}\\}"
This is our required "f'(x)".
Comments
Leave a comment