Solution:
f(x)=sin{x−sin[x−sinxx]x}
On differentiating both sides w.r.t. x,
f(x)=cos{x−sin[x−sinxx]x}×{x−sin[x−sinxx]x}′ [using chain rule]
=cos{x−sin[x−sinxx]x}×{(x−sin[x−sinxx])2(x−sin[x−sinxx])(x)′−x(x−sin[x−sinxx])′} [Using quotient rule]
=cos{x−sin[x−sinxx]x}×{(x−sin[x−sinxx])2(x−sin[x−sinxx])−x(1−cos[x−sinxx])[x−sinxx]′}
=cos{x−sin[x−sinxx]x}×{(x−sin[x−sinxx])2(x−sin[x−sinxx])−x(1−cos[x−sinxx])[(x−sinx)2(x−sinx)−x(1−cosx)]}
=cos{x−sin[x−sinxx]x}×{(x−sin[x−sinxx])2(x−sin[x−sinxx])−x(1−cos[x−sinxx])[(x−sinx)2xcosx−sinx]}
This is our required f′(x).
Comments