Find f'(x) of f(x)= 1/{x-[2/(x + sinx)]}
f(x)=1/(x−2/(x+sinx))f(x)=1/(x-2/(x+sinx))f(x)=1/(x−2/(x+sinx))
f‘(x)=−1/(x−2/(x+sinx))2∗(x−2/(x+sinx))‘f`(x)=-1/(x-2/(x+sinx))^2*(x-2/(x+sinx))`f‘(x)=−1/(x−2/(x+sinx))2∗(x−2/(x+sinx))‘
(x−2/(x+sinx))‘=1+2/(x+sinx)2(x+sinx)‘(x-2/(x+sinx))`=1+2/(x+sinx)^2(x+sinx)`(x−2/(x+sinx))‘=1+2/(x+sinx)2(x+sinx)‘
(x+sinx)‘=1+cosx(x+sinx)`=1+cosx(x+sinx)‘=1+cosx
f‘(x)=−1/(x−2/(x+sinx))2∗(1+2/(x+sinx)2∗(1+cosx))=((x+sinx)2+2+2cosx)/(x(x+sinx)−2)2f`(x)=-1/(x-2/(x+sinx))^2*(1+2/(x+sinx)^2*(1+cosx))= ((x+sinx)^2 + 2 +2cosx)/(x(x+sinx)-2)^2f‘(x)=−1/(x−2/(x+sinx))2∗(1+2/(x+sinx)2∗(1+cosx))=((x+sinx)2+2+2cosx)/(x(x+sinx)−2)2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment