Find f'(x) of f(x)= sin²x.sinx².sin²x²
If f1(x) = sin²x.sinx² and f2(x) = sin²x² then
f(x) = f1(x)*f2(x)
f'(x) = f1'(x)*f2(x) + f1(x)*f2'(x)= (sin²x.sinx²)’.sin²x²+ sin²x.sinx².(sin²x²)’
f1'(x) = (sin²x.sinx²)’ = 2sinx cosx sinx2+sin2x 2xcosx2 = 2sinx (cosx sinx2 +x sinx cosx2)
f2'(x) = (sin²x²)’ = 2 sinx2 cosx2 2x = 4x sinx2 cosx2
f'(x) = 2sinx (cosx sinx2 +x sinx cosx2) sin²x²+ 4x sinx2 cosx2 sin²x sinx² =
= sin²x² [2sinx (cosx sinx2 +x sinx cosx2)+ 4x cosx2 sin²x] =
= 2sinx sin²x² [cosx sinx2 +x sinx cosx2+ 2x cosx2 sinx] =
= 2sinx sin²x² [cosx sinx2 +3x sinx cosx2]
Answer:
f'(x) = 2sinx sin²x² [cosx sinx2 +3x sinx cosx2]
Comments
Leave a comment