Question #167812

Evaluate the integral of (dt)/(cos² t)


1
Expert's answer
2021-03-09T03:31:54-0500

dtcos2 (t)\int\frac{dt}{\cos^2{\ \left(t\right)}}

 let\ x=\tan{\left(t\right)} → \cos{\left(t\right)}=\frac{1}{\sqrt{1+x^2}},\sin{\left(t\right)}=\frac{x}{\sqrt{1+x^2}}\

dx=sec2(t) dtdx=\sec^2{\left(t\right)\ dt}

dt=cos2(t) dx dt=\cos^2{\left(t\right)\ dx\ }

dt=dx1+x2dt=\frac{dx}{1+x^2}

dtcos2(t)=1+x21dx1+x2 = dx\int\frac{dt}{\cos^2{\left(t\right)}}=\int\frac{1+x^2}{1}\frac{dx}{1+x^2}\ =\ \int dx

x+cx+c

tan(t)+c\tan{\left(t\right)}+c



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS