Evaluate the integral of (dt)/(cos² t)
∫dtcos2 (t)\int\frac{dt}{\cos^2{\ \left(t\right)}}∫cos2 (t)dt
let\ x=\tan{\left(t\right)} → \cos{\left(t\right)}=\frac{1}{\sqrt{1+x^2}},\sin{\left(t\right)}=\frac{x}{\sqrt{1+x^2}}\
dx=sec2(t) dtdx=\sec^2{\left(t\right)\ dt}dx=sec2(t) dt
dt=cos2(t) dx dt=\cos^2{\left(t\right)\ dx\ }dt=cos2(t) dx
dt=dx1+x2dt=\frac{dx}{1+x^2}dt=1+x2dx
∫dtcos2(t)=∫1+x21dx1+x2 = ∫dx\int\frac{dt}{\cos^2{\left(t\right)}}=\int\frac{1+x^2}{1}\frac{dx}{1+x^2}\ =\ \int dx∫cos2(t)dt=∫11+x21+x2dx = ∫dx
x+cx+cx+c
tan(t)+c\tan{\left(t\right)}+ctan(t)+c
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments