Evaluate the integral of y² Csc y³ dy
"\\int y^2csc(y^3) dy =[u=y^3,du=3y^2dy]=\\frac{1}{3} \\int csc(u)du = \\frac{1}{3} \\int \\frac{csc(u)(cot(u)+csc(u))}{cot(u)+csc(u)}du=\\frac{1}{3} \\int -\\frac{-csc(u)cot(u)-csc^2(u)}{cot(u)+csc(u)}du=[s=cot(u)+csc(u), ds=(-csc^2(u)-csc(u)cot(u))du]=-\\frac{1}{3} \\int \\frac{1}{s}ds=-\\frac{ln|s|}{3}+C=-\\frac{ln|cot(u)+csc(u)|}{3}+C=-\\frac{ln|cot(y^3)+csc(y^3)|}{3}+C=[cot(y^3)+csc(y^3)=\\frac{1}{sinx}+\\frac{cosx}{sinx}=\\frac{1+cosx}{sinx}=cot(\\frac{x}{2})]=-\\frac{ln|cot(\\frac{y^3}{2})|}{3}+C=-\\frac{ln|\\frac{cos(\\frac{y^3}{2})}{sin(\\frac{y^3}{2})}|}{3}+C=-\\frac{ln|cos(\\frac{y^3}{2})|-ln|sin(\\frac{y^3}{2})|}{3}+C=\\frac{ln|sin(\\frac{y^3}{2})|-ln|cos(\\frac{y^3}{2})|}{3}+C"
Comments
Leave a comment