∫y2csc(y3)dy=[u=y3,du=3y2dy]=31∫csc(u)du=31∫cot(u)+csc(u)csc(u)(cot(u)+csc(u))du=31∫−cot(u)+csc(u)−csc(u)cot(u)−csc2(u)du=[s=cot(u)+csc(u),ds=(−csc2(u)−csc(u)cot(u))du]=−31∫s1ds=−3ln∣s∣+C=−3ln∣cot(u)+csc(u)∣+C=−3ln∣cot(y3)+csc(y3)∣+C=[cot(y3)+csc(y3)=sinx1+sinxcosx=sinx1+cosx=cot(2x)]=−3ln∣cot(2y3)∣+C=−3ln∣sin(2y3)cos(2y3)∣+C=−3ln∣cos(2y3)∣−ln∣sin(2y3)∣+C=3ln∣sin(2y3)∣−ln∣cos(2y3)∣+C
Comments
Leave a comment