Find the volume of the solid inside the surface r
2 + z
2 = 4 and outside the surface r = 2 cos θ.
Solution.
In cylindrical coordinates, we can express the cylinder as
"r=2\\cos{\\theta}, 0\\leq\\theta\\leq\\pi"and the sphere as
Then, "z=\\pm \\sqrt{4-r^2}."
So,
"V=\\int\\limits_0^\u03c0\\int\\limits_0^{2\\cos{\\theta}}\\int\\limits_{-\\sqrt{4-r^2}}^{\\sqrt{4-r^2}}rdzdrd\\theta=\n\\newline\n=\\int\\limits_0^\u03c0\\int\\limits_0^{2\\cos{\\theta}}2\\int\\limits_{0}^{\\sqrt{4-r^2}}rdzdrd\\theta=\n\\newline\n=\\int\\limits_0^\u03c0\\int\\limits_0^{2\\cos{\\theta}}2r\\sqrt{4-r^2}drd\\theta=\n\\newline""=\\int\\limits_0^\u03c0(-\\frac{2}{3}(4-r^2)^{\\frac{3}{2}})|_0^{2\\cos{\\theta}}d\\theta=\n\\newline""=\\frac{2}{3}\\int\\limits_0^\u03c0(8-8\\sin^3\\theta )d\\theta=\n\\newline""=\\frac{16}{3}\\int\\limits_0^\u03c0(1-\\sin^3\\theta )d\\theta=""=\\frac{16}{3}\\cdot \\frac{1}{4}\\int\\limits_0^\u03c0(4-3\\sin\\theta+\\sin{3\\theta} )d\\theta=""=\\frac{4}{3}(4\\theta+3\\cos\\theta-\\frac{1}{3}\\cos{3\\theta} )|_0^\u03c0=""=\\frac{4}{3}(4\u03c0-3+\\frac{1}{3}-3+\\frac{1}{3})=\n\\newline\n=\\frac{4}{3}(4\u03c0-\\frac{16}{3})=\n\\newline\n=\\frac{16\u03c0}{3}-\\frac{64}{9}."Answer. "\\frac{16\u03c0}{3}-\\frac{64}{9}."
Comments
Leave a comment