Solution.
In cylindrical coordinates, we can express the cylinder as
r = 2 cos θ , 0 ≤ θ ≤ π r=2\cos{\theta}, 0\leq\theta\leq\pi r = 2 cos θ , 0 ≤ θ ≤ π
and the sphere as
r 2 + z 2 = 4. r^2+z^2=4. r 2 + z 2 = 4. Then, z = ± 4 − r 2 . z=\pm \sqrt{4-r^2}. z = ± 4 − r 2 .
So,
V = ∫ 0 π ∫ 0 2 cos θ ∫ − 4 − r 2 4 − r 2 r d z d r d θ = = ∫ 0 π ∫ 0 2 cos θ 2 ∫ 0 4 − r 2 r d z d r d θ = = ∫ 0 π ∫ 0 2 cos θ 2 r 4 − r 2 d r d θ = V=\int\limits_0^π\int\limits_0^{2\cos{\theta}}\int\limits_{-\sqrt{4-r^2}}^{\sqrt{4-r^2}}rdzdrd\theta=
\newline
=\int\limits_0^π\int\limits_0^{2\cos{\theta}}2\int\limits_{0}^{\sqrt{4-r^2}}rdzdrd\theta=
\newline
=\int\limits_0^π\int\limits_0^{2\cos{\theta}}2r\sqrt{4-r^2}drd\theta=
\newline V = 0 ∫ π 0 ∫ 2 c o s θ − 4 − r 2 ∫ 4 − r 2 r d z d r d θ = = 0 ∫ π 0 ∫ 2 c o s θ 2 0 ∫ 4 − r 2 r d z d r d θ = = 0 ∫ π 0 ∫ 2 c o s θ 2 r 4 − r 2 d r d θ = = ∫ 0 π ( − 2 3 ( 4 − r 2 ) 3 2 ) ∣ 0 2 cos θ d θ = =\int\limits_0^π(-\frac{2}{3}(4-r^2)^{\frac{3}{2}})|_0^{2\cos{\theta}}d\theta=
\newline = 0 ∫ π ( − 3 2 ( 4 − r 2 ) 2 3 ) ∣ 0 2 c o s θ d θ = = 2 3 ∫ 0 π ( 8 − 8 sin 3 θ ) d θ = =\frac{2}{3}\int\limits_0^π(8-8\sin^3\theta )d\theta=
\newline = 3 2 0 ∫ π ( 8 − 8 sin 3 θ ) d θ = = 16 3 ∫ 0 π ( 1 − sin 3 θ ) d θ = =\frac{16}{3}\int\limits_0^π(1-\sin^3\theta )d\theta= = 3 16 0 ∫ π ( 1 − sin 3 θ ) d θ = = 16 3 ⋅ 1 4 ∫ 0 π ( 4 − 3 sin θ + sin 3 θ ) d θ = =\frac{16}{3}\cdot \frac{1}{4}\int\limits_0^π(4-3\sin\theta+\sin{3\theta} )d\theta= = 3 16 ⋅ 4 1 0 ∫ π ( 4 − 3 sin θ + sin 3 θ ) d θ = = 4 3 ( 4 θ + 3 cos θ − 1 3 cos 3 θ ) ∣ 0 π = =\frac{4}{3}(4\theta+3\cos\theta-\frac{1}{3}\cos{3\theta} )|_0^π= = 3 4 ( 4 θ + 3 cos θ − 3 1 cos 3 θ ) ∣ 0 π = = 4 3 ( 4 π − 3 + 1 3 − 3 + 1 3 ) = = 4 3 ( 4 π − 16 3 ) = = 16 π 3 − 64 9 . =\frac{4}{3}(4π-3+\frac{1}{3}-3+\frac{1}{3})=
\newline
=\frac{4}{3}(4π-\frac{16}{3})=
\newline
=\frac{16π}{3}-\frac{64}{9}. = 3 4 ( 4 π − 3 + 3 1 − 3 + 3 1 ) = = 3 4 ( 4 π − 3 16 ) = = 3 16 π − 9 64 . Answer. 16 π 3 − 64 9 . \frac{16π}{3}-\frac{64}{9}. 3 16 π − 9 64 .
Comments