Evaluate the ∫(z+2)/(z²+4z) dz from -3 to 2
"\\int \\dfrac{z+2}{z^2+4z}dz"
Use "u"-substitution
"u=z^2+4z, du=(2z+4)dz"
"=\\dfrac{1}{2}\\ln|z^2+4z|+C"
"=\\lim\\limits_{t\\to0^-}\\bigg[\\dfrac{1}{2}\\ln|z^2+4z|\\bigg]\\begin{matrix}\n t \\\\\n -3\n\\end{matrix}+\\lim\\limits_{t\\to0^+}\\bigg[\\dfrac{1}{2}\\ln|z^2+4z|\\bigg]\\begin{matrix}\n 2 \\\\\n t\n\\end{matrix}"
"=\\dfrac{1}{2}\\lim\\limits_{t\\to0^-}\\ln|t^2+4t|-\\dfrac{1}{2}\\lim\\limits_{t\\to0^-}\\ln|(-3)^2+4(-3)|+"
"+\\dfrac{1}{2}\\ln|(2)^2+4(2)|-\\dfrac{1}{2}\\lim\\limits_{t\\to0^+}\\ln|t^2+4t|"
The integral "\\displaystyle\\int_{-3}^2 \\dfrac{z+2}{z^2+4z}dz" diverges.
Comments
Leave a comment