Question #167797

Evaluate the ∫(z+2)/(z²+4z) dz from -3 to 2


1
Expert's answer
2021-03-11T06:27:23-0500
32z+2z2+4zdz\displaystyle\int_{-3}^2 \dfrac{z+2}{z^2+4z}dz

z+2z2+4zdz\int \dfrac{z+2}{z^2+4z}dz

Use uu-substitution

u=z2+4z,du=(2z+4)dzu=z^2+4z, du=(2z+4)dz


z+2z2+4zdz=12duu=12lnu+C\int \dfrac{z+2}{z^2+4z}dz=\dfrac{1}{2}\int \dfrac{du}{u}=\dfrac{1}{2}\ln|u|+C

=12lnz2+4z+C=\dfrac{1}{2}\ln|z^2+4z|+C


32z+2z2+4zdz=30z+2z2+4zdz+02z+2z2+4zdz\displaystyle\int_{-3}^2 \dfrac{z+2}{z^2+4z}dz=\displaystyle\int_{-3}^0 \dfrac{z+2}{z^2+4z}dz+\displaystyle\int_{0}^2 \dfrac{z+2}{z^2+4z}dz


=limt03tz+2z2+4zdz+limt0+t2z+2z2+4zdz=\lim\limits_{t\to0^-}\displaystyle\int_{-3}^t \dfrac{z+2}{z^2+4z}dz+\lim\limits_{t\to0^+}\displaystyle\int_{t}^2 \dfrac{z+2}{z^2+4z}dz

=limt0[12lnz2+4z]t3+limt0+[12lnz2+4z]2t=\lim\limits_{t\to0^-}\bigg[\dfrac{1}{2}\ln|z^2+4z|\bigg]\begin{matrix} t \\ -3 \end{matrix}+\lim\limits_{t\to0^+}\bigg[\dfrac{1}{2}\ln|z^2+4z|\bigg]\begin{matrix} 2 \\ t \end{matrix}

=12limt0lnt2+4t12limt0ln(3)2+4(3)+=\dfrac{1}{2}\lim\limits_{t\to0^-}\ln|t^2+4t|-\dfrac{1}{2}\lim\limits_{t\to0^-}\ln|(-3)^2+4(-3)|+

+12ln(2)2+4(2)12limt0+lnt2+4t+\dfrac{1}{2}\ln|(2)^2+4(2)|-\dfrac{1}{2}\lim\limits_{t\to0^+}\ln|t^2+4t|

The integral 32z+2z2+4zdz\displaystyle\int_{-3}^2 \dfrac{z+2}{z^2+4z}dz diverges.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS