v ( t ) = ∫ a ( t ) d t = ∫ 4 t − 3 / 2 d t = − 8 t + C 1 v(t)=\int a(t)dt= \int 4t^{-3/2}dt= \frac{-8}{\sqrt{t}} +C_1 v ( t ) = ∫ a ( t ) d t = ∫ 4 t − 3/2 d t = t − 8 + C 1
s ( t ) = ∫ v ( t ) d t = ∫ ( − 8 t − 0.5 + C 1 ) d t = − 16 t + C 1 t + C 2 s(t)= \int v(t)dt =\int( -8t^{-0.5}+C_1)dt =-16\sqrt{t} +C_1t + C_2 s ( t ) = ∫ v ( t ) d t = ∫ ( − 8 t − 0.5 + C 1 ) d t = − 16 t + C 1 t + C 2
16=-32+4C1 +C2
C2 =48+4C1
25 = − 16 6 + 6 C 1 + 48 + 4 C 1 25=-16 \sqrt{6}+ 6C1+48+4C1 25 = − 16 6 + 6 C 1 + 48 + 4 C 1
10 C 1 = − 23 + 16 6 10C_1=-23+16 \sqrt{6} 10 C 1 = − 23 + 16 6
C 1 = 1.6 6 − 2.3 C_1=1.6 \sqrt{6}-2.3 C 1 = 1.6 6 − 2.3
C 2 = 38.8 + 6.4 6 C_2=38.8+6.4 \sqrt{6} C 2 = 38.8 + 6.4 6
Answer: v ( t ) = − 8 t + 1.6 6 − 2.3 v(t)= \frac{-8}{\sqrt{t}}+1.6\sqrt{6}-2.3 v ( t ) = t − 8 + 1.6 6 − 2.3
s ( t ) = − 16 t + t ( 1.6 6 − 2.3 ) + 38.8 + 6.4 6 s(t)=-16\sqrt{t}+t(1.6 \sqrt{6}-2.3) +38.8+6.4\sqrt{6} s ( t ) = − 16 t + t ( 1.6 6 − 2.3 ) + 38.8 + 6.4 6
Comments