1) Antiderivative of -4csc(x)cot(x)dx :Show all work
2) Antiderivative of -1cot^2(x)dx :Show all work
3) Antiderivative of ((6/x^3)+cube root of x^2)dx :Show all work
4) Write the Antiderivative and definite integral (leave in terms of e if applicable) --> the integral from -1 to 3 (10e^x-4x)dx
5) Write the Antiderivative and definite integral(leave in radical form if applicable)--> the integral from (pi/2) to (5pi/6) (-3cos(x)-4sin(x))dx
1) "\u222b-4csc(x)cot(x)dx"
"-4(\u222b\\frac{1}{sin\\left(x\\right)}\\frac{\\cos{\\left(x\\right)}}{\\sin{\\left(x\\right)}}\\ )\\ dx"
"-4\u222b\\frac{\\cos{\\left(x\\right)}}{\\sin^2{(x)}}\\ dx"
let u = sin(x)
du = cos(x) dx
"-4\u222b\\frac{du}{u^2}"
"\\frac{4}{u}+c"
"\\frac{4}{\\sin{\\left(x\\right)}}+c\\"
"4\\csc{\\left(x\\right)}+c"
2) "\u222b-1\\cot^2{\\ \\left(x\\right)\\ dx\\ }"
"-1\u222b\\frac{\\cos^2{\\left(x\\right)}}{\\sin^2{\\left(x\\right)}}\\ dx"
"-1\u222b\\ \\frac{{1-\\sin}^2{\\left(x\\right)}}{\\sin^2{\\left(x\\right)}}dx"
"-1\u222b\\ \\frac{1}{\\sin^2{\\left(x\\right)}}dx\\ +\\ 1\\int dx"
let t = tan(x)
"dt = \\ sec^2\\left(x\\right)\\ dx"
"sin(x) = \\frac{t}{\\sqrt{1+t^2}}"
"\\frac{1}{\\sin^2{\\left(x\\right)}}=\\frac{1+t^2}{t^2}"
"\\cos{\\left(x\\right)}=\\frac{1}{\\sqrt{1+t^2}}"
"\\sec^2{\\left(x\\right)}=1+t^2"
"dx=\\frac{dt}{1+t^2}"
"-1\u222b\\ \\frac{1}{\\sin^2{\\left(x\\right)}}dx+1\\int dx=\\ -1\\int\\frac{1+t^2}{t^2}\\frac{dt}{1+t^2}+\\int\\frac{dt}{1+t^2}"
"-1\u222b\\frac{dt}{t^2}\\ +\\tan^{-1}{\\ }(t) + c2"
"\\frac{1}{t}+ \\tan^{-1}{\\ }\\left(t\\right) + c"
"\\frac{1}{\\tan{\\left(x\\right)}}+\\tan^{-1}{\\ }\\left(\\tan{\\left(x\\right)}\\right)+c"
"\\cot{\\left(x\\right)}+x+c"
3) "\u222b(6x^{-3}+x^\\frac{2}{3})\\ dx\\"
"-3x^{-2}+\\frac{3x^\\frac{5}{3}}{5} + c"
4) "\\int_{-1}^{3}{(10}e^x-4x\\ )\\ dx"
"(10e^x-2x^2)"
substituting the limits
"\\left(10e^3-2\\left(3^2\\right)\\right)-(10e^{-1}-2\\left(-1\\right)^2)"
"10\\left(e^3-e^{-1}\\right)-16"
5) "\\int_{\\frac{\\pi}{2}}^{\\frac{5\\pi}{6}}\\left(-3\\cos{\\left(x\\right)}-4\\sin{\\left(x\\right)}\\ \\right)dx"
"(-3\\sin{\\left(x\\right)}+4\\cos(x))"
substituting the limits,
"(-3\\sin{\\left(\\frac{5\\pi}{6}\\right)}+4\\cos{\\left(\\frac{5\\pi}{6}\\right)}\\ )-(-3\\sin{\\left(\\frac{\\pi}{2}\\right)}+4\\cos(\\frac{\\pi}{2}))"
"-3\\left(\\frac{1}{2}\\right)+4\\left(-\\frac{\\sqrt3}{2}\\right)+3(1)-4(0)"
"\\frac{3-4\\sqrt3}{2}"
Comments
Leave a comment