1) ∫−4csc(x)cot(x)dx
−4(∫sin(x)1sin(x)cos(x) ) dx
−4∫sin2(x)cos(x) dx
let u = sin(x)
du = cos(x) dx
−4∫u2du
u4+c
\frac{4}{\sin{\left(x\right)}}+c\
4csc(x)+c
2) ∫−1cot2 (x) dx
−1∫sin2(x)cos2(x) dx
−1∫ sin2(x)1−sin2(x)dx
−1∫ sin2(x)1dx + 1∫dx
let t = tan(x)
dt= sec2(x) dx
sin(x)=1+t2t
sin2(x)1=t21+t2
cos(x)=1+t21
sec2(x)=1+t2
dx=1+t2dt
−1∫ sin2(x)1dx+1∫dx= −1∫t21+t21+t2dt+∫1+t2dt
−1∫t2dt +tan−1 (t)+c2
t1+tan−1 (t)+c
tan(x)1+tan−1 (tan(x))+c
cot(x)+x+c
3) ∫(6x^{-3}+x^\frac{2}{3})\ dx\
−3x−2+53x35+c
4) ∫−13(10ex−4x ) dx
(10ex−2x2)
substituting the limits
(10e3−2(32))−(10e−1−2(−1)2)
10(e3−e−1)−16
5) ∫2π65π(−3cos(x)−4sin(x) )dx
(−3sin(x)+4cos(x))
substituting the limits,
(−3sin(65π)+4cos(65π) )−(−3sin(2π)+4cos(2π))
−3(21)+4(−23)+3(1)−4(0)
23−43
Comments