Question #167373

1) Antiderivative of -4csc(x)cot(x)dx :Show all work

 

2) Antiderivative of -1cot^2(x)dx :Show all work

 

3) Antiderivative of ((6/x^3)+cube root of x^2)dx :Show all work

 

4) Write the Antiderivative and definite integral (leave in terms of e if applicable) --> the integral from -1 to 3 (10e^x-4x)dx

 

5) Write the Antiderivative and definite integral(leave in radical form if applicable)--> the integral from (pi/2) to (5pi/6) (-3cos(x)-4sin(x))dx




1
Expert's answer
2021-03-03T10:47:05-0500

1) 4csc(x)cot(x)dx∫-4csc(x)cot(x)dx

4(1sin(x)cos(x)sin(x) ) dx-4(∫\frac{1}{sin\left(x\right)}\frac{\cos{\left(x\right)}}{\sin{\left(x\right)}}\ )\ dx

4cos(x)sin2(x) dx-4∫\frac{\cos{\left(x\right)}}{\sin^2{(x)}}\ dx

let u = sin(x)

du = cos(x) dx

4duu2-4∫\frac{du}{u^2}

4u+c\frac{4}{u}+c

\frac{4}{\sin{\left(x\right)}}+c\

4csc(x)+c4\csc{\left(x\right)}+c


2) 1cot2 (x) dx ∫-1\cot^2{\ \left(x\right)\ dx\ }

1cos2(x)sin2(x) dx-1∫\frac{\cos^2{\left(x\right)}}{\sin^2{\left(x\right)}}\ dx

1 1sin2(x)sin2(x)dx-1∫\ \frac{{1-\sin}^2{\left(x\right)}}{\sin^2{\left(x\right)}}dx

1 1sin2(x)dx + 1dx-1∫\ \frac{1}{\sin^2{\left(x\right)}}dx\ +\ 1\int dx

let t = tan(x)

dt= sec2(x) dxdt = \ sec^2\left(x\right)\ dx

sin(x)=t1+t2sin(x) = \frac{t}{\sqrt{1+t^2}}

1sin2(x)=1+t2t2\frac{1}{\sin^2{\left(x\right)}}=\frac{1+t^2}{t^2}

cos(x)=11+t2\cos{\left(x\right)}=\frac{1}{\sqrt{1+t^2}}

sec2(x)=1+t2\sec^2{\left(x\right)}=1+t^2

dx=dt1+t2dx=\frac{dt}{1+t^2}

1 1sin2(x)dx+1dx= 11+t2t2dt1+t2+dt1+t2-1∫\ \frac{1}{\sin^2{\left(x\right)}}dx+1\int dx=\ -1\int\frac{1+t^2}{t^2}\frac{dt}{1+t^2}+\int\frac{dt}{1+t^2}

1dtt2 +tan1 (t)+c2-1∫\frac{dt}{t^2}\ +\tan^{-1}{\ }(t) + c2

1t+tan1 (t)+c\frac{1}{t}+ \tan^{-1}{\ }\left(t\right) + c

1tan(x)+tan1 (tan(x))+c\frac{1}{\tan{\left(x\right)}}+\tan^{-1}{\ }\left(\tan{\left(x\right)}\right)+c

cot(x)+x+c\cot{\left(x\right)}+x+c


3) ∫(6x^{-3}+x^\frac{2}{3})\ dx\

3x2+3x535+c-3x^{-2}+\frac{3x^\frac{5}{3}}{5} + c


4) 13(10ex4x ) dx\int_{-1}^{3}{(10}e^x-4x\ )\ dx

(10ex2x2)(10e^x-2x^2)

substituting the limits

(10e32(32))(10e12(1)2)\left(10e^3-2\left(3^2\right)\right)-(10e^{-1}-2\left(-1\right)^2)

10(e3e1)1610\left(e^3-e^{-1}\right)-16


5) π25π6(3cos(x)4sin(x) )dx\int_{\frac{\pi}{2}}^{\frac{5\pi}{6}}\left(-3\cos{\left(x\right)}-4\sin{\left(x\right)}\ \right)dx

(3sin(x)+4cos(x))(-3\sin{\left(x\right)}+4\cos(x))

substituting the limits,

(3sin(5π6)+4cos(5π6) )(3sin(π2)+4cos(π2))(-3\sin{\left(\frac{5\pi}{6}\right)}+4\cos{\left(\frac{5\pi}{6}\right)}\ )-(-3\sin{\left(\frac{\pi}{2}\right)}+4\cos(\frac{\pi}{2}))

3(12)+4(32)+3(1)4(0)-3\left(\frac{1}{2}\right)+4\left(-\frac{\sqrt3}{2}\right)+3(1)-4(0)

3432\frac{3-4\sqrt3}{2}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS