Find the volume of the solid generated by revolving the area bounded by y=4x−x2, y=x, about x=3.
Solution.
"V=\u03c0(\\int_0^3(4x-x^2)^2dx-\\int_0^3x^2dx)=\\newline\n\u03c0(\\int_0^3(16x^2-8x^3+x^4-x^2)dx)=\\newline\n\u03c0(\\frac{16x^3}{3}-\\frac{8x^4}{4}+\\frac{x^5}{5}-\\frac{x^3}{3})|_0^3=\\newline\n\\frac{108}{5}\u03c0=21\\frac{3}{5}\u03c0."
Comments
Leave a comment