Question #167225

Find the volume of the solid generated by revolving the area bounded by y=4x−x2, y=x, about x=3.


1
Expert's answer
2021-03-01T06:43:13-0500

Solution.

V=π(03(4xx2)2dx03x2dx)=π(03(16x28x3+x4x2)dx)=π(16x338x44+x55x33)03=1085π=2135π.V=π(\int_0^3(4x-x^2)^2dx-\int_0^3x^2dx)=\newline π(\int_0^3(16x^2-8x^3+x^4-x^2)dx)=\newline π(\frac{16x^3}{3}-\frac{8x^4}{4}+\frac{x^5}{5}-\frac{x^3}{3})|_0^3=\newline \frac{108}{5}π=21\frac{3}{5}π.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS