Question #167027

The points (-1,3) and (0,2) are on a curve, and at any point (x,y) on the curve 𝑑^2𝑦/𝑑𝑥^2 = 2 − 4𝑥. Find an equation of the curve.


1
Expert's answer
2021-03-01T07:10:54-0500

To find the equation of the curve, we first find the general solution of the given differential equation.



d2ydx2=24x\dfrac{d^2y}{dx^2} = 2-4x

We can rewrite the above as:


d2y=(24x)dx2d(dy)=[(24x)dx]dxd^2y =(2-4x)dx^2\\ d(dy) = [(2-4x)dx]dx

Integrating the above:


d(dy)=[(24x)dx]dxdy=(2x2x2+c1)dx\int d(dy) = \int[(2-4x)dx]dx\\ dy = (2x - 2x^2 +c_1)dx

Integrating again:


dy=(2x2x2+c1)dxy=x22x33+c1x+c2\int dy = \int(2x - 2x^2 +c_1)dx\\ \bold{y =x^2-\frac{2x^3}{3}+c_1x + c_2}

Which is the general solution of the curve.


At point (-1,3), where x = -1 and y = 3:


3=(1)22(1)33+c1(1)+c23=1+23c1+c23123=c1+c243=c1+c2(eqn1)3 = (-1)^2 - \frac{2(-1)^3}{3} +c_1(-1) + c_2\\ 3 = 1 + \frac{2}{3} - c_1+c_2\\ 3-1-\frac{2}{3} = -c_1+c_2\\ \frac{4}{3} = -c_1+c_2 \cdots \cdots (eqn 1)

At point (0,2), where x = 0 and y=2;

2=(0)22(0)33+c1(0)+c22=c2(eqn2)2 = (0)^2 - \frac{2(0)^3}{3} +c_1(0) + c_2\\ 2 = c_2 \cdots \cdots (eqn 2)

Substitute eqn 2 into eqn 1:


43=c1+2c1=243c1=23\frac{4}{3} = -c_1+2\\ c_1 = 2 - \frac{4}{3}\\ c_1 = \frac{2}{3}

Thus the equation of the curve is:


y=x22x33+2x3+2\bold{y =x^2-\frac{2x^3}{3}+\frac{2x}{3} + 2}

OR


y=2+2x3+x22x33\bold{y =2+\frac{2x}{3}+x^2-\frac{2x^3}{3} }


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS