Ques:1:
∫ (12x5−6x3−4x+21)dx
Distribute the integeration on each term
⇒∫12x5dx−∫6X3dx−∫4xdx+∫21dx
⇒12×5+1x(5+1)−6×3+1x(3+1)−4×1+1x1+1+21×0+1x0+1
⇒ 12×6x6−6×4x4−4×2x2+21×x
⇒2x6−23x4−2x2+2x
Ques :2:
∫(x+3)2dx
⇒∫(x+3+23x)dx
⇒∫xdx+3∫dx+∫23×x21dx
⇒2x2+3x+23×21+1x21+1
⇒2x2+3x+23×23x23
Ques::3::
∫(xe−ex+2×e×x)dx
⇒∫xedx−∫exdx+∫2exdx
⇒e+1xe+1−2ex2+ex2
Ques::4::
∫2t(2t+1)(2t−1)dx
As we have to integerate in terms of x .so the terms containing t can be taken outside the integeration
⇒ 2t(2t+1)(2t−1)∫dx
⇒2t(4t2−1)×x
Ques::5::
∫(8y3−2y1+1)dx
⇒8y3∫dx−2y1∫dx+∫dx
⇒8y3×x−2yx+x
Comments
Leave a comment