i) Find all points on the curve x(x + y2) = y where the tangent line is parallel to the x-axis.
ii) Find all points on the curve x(x + y2) = y where the tangent line is parallel to the y-axis
i) Use implicit differentiation, then set dy dx = 0.
"2x+y^2+2xy\\dfrac{dy}{dx}=\\dfrac{dy}{dx}"
"\\dfrac{dy}{dx}=\\dfrac{2x+y^2}{1-2xy}"
"\\dfrac{dy}{dx}=0=>\\dfrac{2x+y^2}{1-2xy}=0"
"2x+y^2=0, 1-2xy\\not=0"
"x=-\\dfrac{y^2}{2}"
Substitute
"-\\dfrac{y^4}{4}=y"
"y_1=0, x_1=0, Point(0, 0)"
"y_2=-\\sqrt[3]{4}, x_2=-\\sqrt[3]{2}, Point (-\\sqrt[3]{2}, -\\sqrt[3]{4})"
"Point(0, 0), Point (-\\sqrt[3]{2}, -\\sqrt[3]{4})"
ii) ) The points with vertical tangents are those where the denominator of "\\dfrac{dy}{dx}" is zero (making the slope undefined). From part (i), we have
"x=\\dfrac{1}{2y}, y\\not=0"
Substitute
"\\dfrac{1}{4y^2}=\\dfrac{y}{2}"
"y=\\dfrac{\\sqrt[3]{4}}{2}"
"x=\\dfrac{\\sqrt[3]{2}}{2}"
"Point(\\dfrac{\\sqrt[3]{2}}{2}, \\dfrac{\\sqrt[3]{4}}{2})"
Comments
Leave a comment