Question #166449

∫(tan^-1 x)/(1+x² )dx from 0 to 1


1
Expert's answer
2021-03-01T06:40:58-0500

01tan1x1+x2dx=01tan1xddx(tan1x)dx=12(tan1x)201=12[(tan11)2tan10)2]=12[(π4)20]=π232\displaystyle\int_0^1\frac{\tan^{-1}x}{1+x^2}\,dx \\ = \int_0^1\tan^{-1}x\,\frac d{dx}(\tan^{-1}x)\,dx \\ = \frac12(\tan^{-1}x)^2\Big|_0^1 \\ = \frac12[(\tan^{-1}1)^2 - \tan^{-1}0)^2] \\ = \frac12[(\frac \pi4)^2 - 0] \\ = \frac {\pi^2}{32}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS