∫(tan^-1 x)/(1+x² )dx from 0 to 1
∫01tan−1x1+x2 dx=∫01tan−1x ddx(tan−1x) dx=12(tan−1x)2∣01=12[(tan−11)2−tan−10)2]=12[(π4)2−0]=π232\displaystyle\int_0^1\frac{\tan^{-1}x}{1+x^2}\,dx \\ = \int_0^1\tan^{-1}x\,\frac d{dx}(\tan^{-1}x)\,dx \\ = \frac12(\tan^{-1}x)^2\Big|_0^1 \\ = \frac12[(\tan^{-1}1)^2 - \tan^{-1}0)^2] \\ = \frac12[(\frac \pi4)^2 - 0] \\ = \frac {\pi^2}{32}∫011+x2tan−1xdx=∫01tan−1xdxd(tan−1x)dx=21(tan−1x)2∣∣01=21[(tan−11)2−tan−10)2]=21[(4π)2−0]=32π2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments