∫(tan^-1 x)/(1+x² )dx from 0 to 1
"\\displaystyle\\int_0^1\\frac{\\tan^{-1}x}{1+x^2}\\,dx \\\\\n= \\int_0^1\\tan^{-1}x\\,\\frac d{dx}(\\tan^{-1}x)\\,dx \\\\\n= \\frac12(\\tan^{-1}x)^2\\Big|_0^1 \\\\\n= \\frac12[(\\tan^{-1}1)^2 - \\tan^{-1}0)^2] \\\\\n= \\frac12[(\\frac \\pi4)^2 - 0] \\\\\n= \\frac {\\pi^2}{32}"
Comments
Leave a comment