- f(x)=ln(4+5x)
Let
u=4+5x Then
f(x)=ln(u)By chain rule,
dxd[f(x)]=dud[f(x)]×dxd[u]
dud[f(x)]=u1=4+5x1dxd[u]=5∴dxd[f(x)]=4+5x1×5=4+5x5
2.F(y)=ln(sin(5y))
dyd[ln(sin(5y))]=sin(5y)1×dyd[5y]=sin(5y)cos(5y)×dyd[5y]=sin(5y)cos(5y)⋅5⋅dyd[5]=sin(5y)5cos(5y)⋅1F′(y)=sin(5y)5cos(5y)
3.y=ln∣x3+1∣
y′=∣x3+1∣1⋅dxd[∣x3+1∣]=∣x3+1∣∣x3+1∣x3+1⋅dxd[x3+1]=x3+1dxd[x3]+dxd[1]=x3+13x2+0y′=x3+13x2
Comments