Differentiate the function or find ππ¦ ππ₯ and simplify the result.
1. π(π₯) = ln(4 + 5π₯)
2. πΉ(π¦) = ln(sin 5π¦)
3. π¦ = ln|π₯3 + 1|
4. π¦ = π₯5(π₯+2)/π₯β3 (by logarithmic differentiation)
5. π¦ = π5x
6. π¦ = πx sin πx
7. π(π₯) = 35x
8. π(π₯) = 4sin2x
9. π(π₯) = sinh π₯2
10. π(π₯) = coth 1/x
Let
Then
By chain rule,
"\\dfrac{d}{du}[f(x)] = \\dfrac{1}{u} = \\dfrac{1}{4+5x}""\\dfrac{d}{dx}[u] = 5""\\therefore \\bold{\\dfrac{d}{dx}[f(x)]} = \\dfrac{1}{4+5x} \\times 5 = \\bold{\\dfrac{5}{4+5x}}"
"\\bold{2. \\quad F(y) = \\ln(\\sin(5y))}"
"\\bold{3. \\quad \ud835\udc66 = \\ln|\ud835\udc65^3 + 1|}"
Comments
Leave a comment