Given integral is-
           ∫∫xdxdy+∫∫2ydzdx+∫∫3zdxdy  
Given Region is x2+y2+z2=1 
Let's evaluate the first term- ∫∫xdxdy 
Putting z=0, we get x2+y2=1⟹y=1−x2 
  =∫01∫01−x2xdxdy 
  =∫01x[y]01−x2dx 
  =∫01x(1−x2)dx 
          Let 1−x2=t 
                    −2xdx=dtxdx=−2dt 
   
          =∫10−2tdt 
           =−21[23t23]10 
               =31(1)=31       −(1) 
Solving integral of second term-
   ∫∫R2ydxdz 
Putting the value of y=1−x2−z2  in above integral as
 =2∫01∫01−z21−z2−x2dzdx 
=2∫01(2x1−z2−x2+21−z2sin−1(1−z2x)01−z2)dz 
=2∫01(21−z2sin−1(1−z21−z2)−0)dz 
=2∫0121−z2sin−1(1)dz 
=∫01(1−z2)2πdz 
=2π(z−3z3)01 
=2π(1−31)=2π(32)=3π         −(2) 
Now integrate the third term-
∫∫R3zdxdy 
Now Putting the value z=1−x2−y2  and applying the same procedure as above-
=3∫01∫01−y21−y2−x2dxdy 
=3∫01(2x1−y2−x2+21−y2sin−1(1−y2x)01−y2)dy 
=3∫01(21−y2sin−1(1−y21−y2)−0)dy 
=3∫0121−y2sin−1(1)dy 
=23∫01(1−y2)2πdy 
=43π(y−3y3)01 
=43π(1−31)=43π(32)=2π         −(3) 
Adding the three equation we get-
∫∫xdxdy+∫∫2ydzdx+∫∫3zdxdy=31+3π+2π=65π+31 
    
                             
Comments