double integral of xdydx +2ydzdx+ 3zdxdy over the surface of the spherex^2 +y^2 +z^2 is
Given integral is-
"\\int \\int xdxdy+\\int \\int 2ydzdx+\\int \\int3zdxdy"
Given Region is "x^2+y^2+z^2=1"
Let's evaluate the first term- "\\int\\int xdxdy"
Putting "z=0, \\text { we get } x^2+y^2=1\\implies y=\\sqrt{1-x^2}"
"=\\int_0^1\\int_0^{\\sqrt{1-x^2}} xdxdy"
"=\\int_0^1x[y]_0^{\\sqrt{1-x^2}}dx"
"=\\int_0^1x(\\sqrt{1-x^2})dx"
"\\text{ Let }1-x^2=t"
"\\\\ -2xdx=dt\\\\ xdx=\\dfrac{dt}{-2}"
"=\\int_1^0\\dfrac{\\sqrt{t}}{-2}dt"
"=-\\dfrac{1}{2}[\\dfrac{t^\\frac{3}{2}}{\\frac{3}{2}}]_1^0"
"=\\dfrac{1}{3}(1)=\\dfrac{1}{3}~~~~~~~-(1)"
Solving integral of second term-
"\\int\\int_R 2ydxdz"
Putting the value of "y=\\sqrt{1-x^2-z^2}" in above integral as
"=2\\int_0^1\\int_0^{\\sqrt{1-z^2}}\\sqrt{1-z^2-x^2}dzdx"
"=2\\int_0^1(\\dfrac{x}{2}\\sqrt{1-z^2-x^2}+\\dfrac{1-z^2}{2}sin^{-1}(\\dfrac{x}{\\sqrt{1-z^2}})_0^{\\sqrt{1-z^2}})dz"
"=2\\int_0^1(\\dfrac{1-z^2}{2}sin^{-1}(\\dfrac{\\sqrt{1-z^2}}{\\sqrt{1-z^2}})-0)dz"
"=2\\int_0^1\\dfrac{1-z^2}{2}sin^{-1}(1)dz"
"=\\int_0^1(1-z^2)\\dfrac{\\pi}{2}dz"
"=\\dfrac{\\pi}{2}(z-\\dfrac{z^3}{3})_0^1"
"=\\dfrac{\\pi}{2}(1-\\dfrac{1}{3})=\\dfrac{\\pi}{2}(\\dfrac{2}{3})=\\dfrac{\\pi}{3}~~~~~~~~~-(2)"
Now integrate the third term-
"\\int\\int_R3zdxdy"
Now Putting the value "z =\\sqrt{1-x^2-y^2}" and applying the same procedure as above-
"=3\\int_0^1\\int_0^{\\sqrt{1-y^2}}\\sqrt{1-y^2-x^2}dxdy"
"=3\\int_0^1(\\dfrac{x}{2}\\sqrt{1-y^2-x^2}+\\dfrac{1-y^2}{2}sin^{-1}(\\dfrac{x}{\\sqrt{1-y^2}})_0^{\\sqrt{1-y^2}})dy"
"=3\\int_0^1(\\dfrac{1-y^2}{2}sin^{-1}(\\dfrac{\\sqrt{1-y^2}}{\\sqrt{1-y^2}})-0)dy"
"=3\\int_0^1\\dfrac{1-y^2}{2}sin^{-1}(1)dy"
"=\\dfrac{3}{2}\\int_0^1(1-y^2)\\dfrac{\\pi}{2}dy"
"=\\dfrac{3\\pi}{4}(y-\\dfrac{y^3}{3})_0^1"
"=\\dfrac{3\\pi}{4}(1-\\dfrac{1}{3})=\\dfrac{3\\pi}{4}(\\dfrac{2}{3})=\\dfrac{\\pi}{2}~~~~~~~~~-(3)"
Adding the three equation we get-
"\\int \\int xdxdy+\\int \\int 2ydzdx+\\int \\int3zdxdy=\\dfrac{1}{3}+\\dfrac{\\pi}{3}+\\dfrac{\\pi}{2}=\\dfrac{5\\pi}{6}+\\dfrac{1}{3}"
Comments
Leave a comment