Given integral is-
∫ ∫ x d x d y + ∫ ∫ 2 y d z d x + ∫ ∫ 3 z d x d y \int \int xdxdy+\int \int 2ydzdx+\int \int3zdxdy ∫∫ x d x d y + ∫∫ 2 y d z d x + ∫∫ 3 z d x d y
Given Region is x 2 + y 2 + z 2 = 1 x^2+y^2+z^2=1 x 2 + y 2 + z 2 = 1
Let's evaluate the first term- ∫ ∫ x d x d y \int\int xdxdy ∫∫ x d x d y
Putting z = 0 , we get x 2 + y 2 = 1 ⟹ y = 1 − x 2 z=0, \text { we get } x^2+y^2=1\implies y=\sqrt{1-x^2} z = 0 , we get x 2 + y 2 = 1 ⟹ y = 1 − x 2
= ∫ 0 1 ∫ 0 1 − x 2 x d x d y =\int_0^1\int_0^{\sqrt{1-x^2}} xdxdy = ∫ 0 1 ∫ 0 1 − x 2 x d x d y
= ∫ 0 1 x [ y ] 0 1 − x 2 d x =\int_0^1x[y]_0^{\sqrt{1-x^2}}dx = ∫ 0 1 x [ y ] 0 1 − x 2 d x
= ∫ 0 1 x ( 1 − x 2 ) d x =\int_0^1x(\sqrt{1-x^2})dx = ∫ 0 1 x ( 1 − x 2 ) d x
Let 1 − x 2 = t \text{ Let }1-x^2=t Let 1 − x 2 = t
− 2 x d x = d t x d x = d t − 2 \\ -2xdx=dt\\ xdx=\dfrac{dt}{-2} − 2 x d x = d t x d x = − 2 d t
= ∫ 1 0 t − 2 d t =\int_1^0\dfrac{\sqrt{t}}{-2}dt = ∫ 1 0 − 2 t d t
= − 1 2 [ t 3 2 3 2 ] 1 0 =-\dfrac{1}{2}[\dfrac{t^\frac{3}{2}}{\frac{3}{2}}]_1^0 = − 2 1 [ 2 3 t 2 3 ] 1 0
= 1 3 ( 1 ) = 1 3 − ( 1 ) =\dfrac{1}{3}(1)=\dfrac{1}{3}~~~~~~~-(1) = 3 1 ( 1 ) = 3 1 − ( 1 )
Solving integral of second term-
∫ ∫ R 2 y d x d z \int\int_R 2ydxdz ∫ ∫ R 2 y d x d z
Putting the value of y = 1 − x 2 − z 2 y=\sqrt{1-x^2-z^2} y = 1 − x 2 − z 2 in above integral as
= 2 ∫ 0 1 ∫ 0 1 − z 2 1 − z 2 − x 2 d z d x =2\int_0^1\int_0^{\sqrt{1-z^2}}\sqrt{1-z^2-x^2}dzdx = 2 ∫ 0 1 ∫ 0 1 − z 2 1 − z 2 − x 2 d z d x
= 2 ∫ 0 1 ( x 2 1 − z 2 − x 2 + 1 − z 2 2 s i n − 1 ( x 1 − z 2 ) 0 1 − z 2 ) d z =2\int_0^1(\dfrac{x}{2}\sqrt{1-z^2-x^2}+\dfrac{1-z^2}{2}sin^{-1}(\dfrac{x}{\sqrt{1-z^2}})_0^{\sqrt{1-z^2}})dz = 2 ∫ 0 1 ( 2 x 1 − z 2 − x 2 + 2 1 − z 2 s i n − 1 ( 1 − z 2 x ) 0 1 − z 2 ) d z
= 2 ∫ 0 1 ( 1 − z 2 2 s i n − 1 ( 1 − z 2 1 − z 2 ) − 0 ) d z =2\int_0^1(\dfrac{1-z^2}{2}sin^{-1}(\dfrac{\sqrt{1-z^2}}{\sqrt{1-z^2}})-0)dz = 2 ∫ 0 1 ( 2 1 − z 2 s i n − 1 ( 1 − z 2 1 − z 2 ) − 0 ) d z
= 2 ∫ 0 1 1 − z 2 2 s i n − 1 ( 1 ) d z =2\int_0^1\dfrac{1-z^2}{2}sin^{-1}(1)dz = 2 ∫ 0 1 2 1 − z 2 s i n − 1 ( 1 ) d z
= ∫ 0 1 ( 1 − z 2 ) π 2 d z =\int_0^1(1-z^2)\dfrac{\pi}{2}dz = ∫ 0 1 ( 1 − z 2 ) 2 π d z
= π 2 ( z − z 3 3 ) 0 1 =\dfrac{\pi}{2}(z-\dfrac{z^3}{3})_0^1 = 2 π ( z − 3 z 3 ) 0 1
= π 2 ( 1 − 1 3 ) = π 2 ( 2 3 ) = π 3 − ( 2 ) =\dfrac{\pi}{2}(1-\dfrac{1}{3})=\dfrac{\pi}{2}(\dfrac{2}{3})=\dfrac{\pi}{3}~~~~~~~~~-(2) = 2 π ( 1 − 3 1 ) = 2 π ( 3 2 ) = 3 π − ( 2 )
Now integrate the third term-
∫ ∫ R 3 z d x d y \int\int_R3zdxdy ∫ ∫ R 3 z d x d y
Now Putting the value z = 1 − x 2 − y 2 z =\sqrt{1-x^2-y^2} z = 1 − x 2 − y 2 and applying the same procedure as above-
= 3 ∫ 0 1 ∫ 0 1 − y 2 1 − y 2 − x 2 d x d y =3\int_0^1\int_0^{\sqrt{1-y^2}}\sqrt{1-y^2-x^2}dxdy = 3 ∫ 0 1 ∫ 0 1 − y 2 1 − y 2 − x 2 d x d y
= 3 ∫ 0 1 ( x 2 1 − y 2 − x 2 + 1 − y 2 2 s i n − 1 ( x 1 − y 2 ) 0 1 − y 2 ) d y =3\int_0^1(\dfrac{x}{2}\sqrt{1-y^2-x^2}+\dfrac{1-y^2}{2}sin^{-1}(\dfrac{x}{\sqrt{1-y^2}})_0^{\sqrt{1-y^2}})dy = 3 ∫ 0 1 ( 2 x 1 − y 2 − x 2 + 2 1 − y 2 s i n − 1 ( 1 − y 2 x ) 0 1 − y 2 ) d y
= 3 ∫ 0 1 ( 1 − y 2 2 s i n − 1 ( 1 − y 2 1 − y 2 ) − 0 ) d y =3\int_0^1(\dfrac{1-y^2}{2}sin^{-1}(\dfrac{\sqrt{1-y^2}}{\sqrt{1-y^2}})-0)dy = 3 ∫ 0 1 ( 2 1 − y 2 s i n − 1 ( 1 − y 2 1 − y 2 ) − 0 ) d y
= 3 ∫ 0 1 1 − y 2 2 s i n − 1 ( 1 ) d y =3\int_0^1\dfrac{1-y^2}{2}sin^{-1}(1)dy = 3 ∫ 0 1 2 1 − y 2 s i n − 1 ( 1 ) d y
= 3 2 ∫ 0 1 ( 1 − y 2 ) π 2 d y =\dfrac{3}{2}\int_0^1(1-y^2)\dfrac{\pi}{2}dy = 2 3 ∫ 0 1 ( 1 − y 2 ) 2 π d y
= 3 π 4 ( y − y 3 3 ) 0 1 =\dfrac{3\pi}{4}(y-\dfrac{y^3}{3})_0^1 = 4 3 π ( y − 3 y 3 ) 0 1
= 3 π 4 ( 1 − 1 3 ) = 3 π 4 ( 2 3 ) = π 2 − ( 3 ) =\dfrac{3\pi}{4}(1-\dfrac{1}{3})=\dfrac{3\pi}{4}(\dfrac{2}{3})=\dfrac{\pi}{2}~~~~~~~~~-(3) = 4 3 π ( 1 − 3 1 ) = 4 3 π ( 3 2 ) = 2 π − ( 3 )
Adding the three equation we get-
∫ ∫ x d x d y + ∫ ∫ 2 y d z d x + ∫ ∫ 3 z d x d y = 1 3 + π 3 + π 2 = 5 π 6 + 1 3 \int \int xdxdy+\int \int 2ydzdx+\int \int3zdxdy=\dfrac{1}{3}+\dfrac{\pi}{3}+\dfrac{\pi}{2}=\dfrac{5\pi}{6}+\dfrac{1}{3} ∫∫ x d x d y + ∫∫ 2 y d z d x + ∫∫ 3 z d x d y = 3 1 + 3 π + 2 π = 6 5 π + 3 1
Comments