Given integral is-
∫∫xdxdy+∫∫2ydzdx+∫∫3zdxdy
Given Region is x2+y2+z2=1
Let's evaluate the first term- ∫∫xdxdy
Putting z=0, we get x2+y2=1⟹y=1−x2
=∫01∫01−x2xdxdy
=∫01x[y]01−x2dx
=∫01x(1−x2)dx
Let 1−x2=t
−2xdx=dtxdx=−2dt
=∫10−2tdt
=−21[23t23]10
=31(1)=31 −(1)
Solving integral of second term-
∫∫R2ydxdz
Putting the value of y=1−x2−z2 in above integral as
=2∫01∫01−z21−z2−x2dzdx
=2∫01(2x1−z2−x2+21−z2sin−1(1−z2x)01−z2)dz
=2∫01(21−z2sin−1(1−z21−z2)−0)dz
=2∫0121−z2sin−1(1)dz
=∫01(1−z2)2πdz
=2π(z−3z3)01
=2π(1−31)=2π(32)=3π −(2)
Now integrate the third term-
∫∫R3zdxdy
Now Putting the value z=1−x2−y2 and applying the same procedure as above-
=3∫01∫01−y21−y2−x2dxdy
=3∫01(2x1−y2−x2+21−y2sin−1(1−y2x)01−y2)dy
=3∫01(21−y2sin−1(1−y21−y2)−0)dy
=3∫0121−y2sin−1(1)dy
=23∫01(1−y2)2πdy
=43π(y−3y3)01
=43π(1−31)=43π(32)=2π −(3)
Adding the three equation we get-
∫∫xdxdy+∫∫2ydzdx+∫∫3zdxdy=31+3π+2π=65π+31
Comments