Question #165348

double integral of xdydx +2ydzdx+ 3zdxdy over the surface of the spherex^2 +y^2 +z^2 is



1
Expert's answer
2021-02-25T01:32:27-0500

Given integral is-

xdxdy+2ydzdx+3zdxdy\int \int xdxdy+\int \int 2ydzdx+\int \int3zdxdy


Given Region is x2+y2+z2=1x^2+y^2+z^2=1


Let's evaluate the first term- xdxdy\int\int xdxdy

Putting z=0, we get x2+y2=1    y=1x2z=0, \text { we get } x^2+y^2=1\implies y=\sqrt{1-x^2}


=0101x2xdxdy=\int_0^1\int_0^{\sqrt{1-x^2}} xdxdy


=01x[y]01x2dx=\int_0^1x[y]_0^{\sqrt{1-x^2}}dx


=01x(1x2)dx=\int_0^1x(\sqrt{1-x^2})dx



 Let 1x2=t\text{ Let }1-x^2=t

2xdx=dtxdx=dt2\\ -2xdx=dt\\ xdx=\dfrac{dt}{-2}

=10t2dt=\int_1^0\dfrac{\sqrt{t}}{-2}dt


=12[t3232]10=-\dfrac{1}{2}[\dfrac{t^\frac{3}{2}}{\frac{3}{2}}]_1^0


=13(1)=13       (1)=\dfrac{1}{3}(1)=\dfrac{1}{3}~~~~~~~-(1)


Solving integral of second term-


R2ydxdz\int\int_R 2ydxdz


Putting the value of y=1x2z2y=\sqrt{1-x^2-z^2} in above integral as


=20101z21z2x2dzdx=2\int_0^1\int_0^{\sqrt{1-z^2}}\sqrt{1-z^2-x^2}dzdx


=201(x21z2x2+1z22sin1(x1z2)01z2)dz=2\int_0^1(\dfrac{x}{2}\sqrt{1-z^2-x^2}+\dfrac{1-z^2}{2}sin^{-1}(\dfrac{x}{\sqrt{1-z^2}})_0^{\sqrt{1-z^2}})dz


=201(1z22sin1(1z21z2)0)dz=2\int_0^1(\dfrac{1-z^2}{2}sin^{-1}(\dfrac{\sqrt{1-z^2}}{\sqrt{1-z^2}})-0)dz


=2011z22sin1(1)dz=2\int_0^1\dfrac{1-z^2}{2}sin^{-1}(1)dz


=01(1z2)π2dz=\int_0^1(1-z^2)\dfrac{\pi}{2}dz


=π2(zz33)01=\dfrac{\pi}{2}(z-\dfrac{z^3}{3})_0^1


=π2(113)=π2(23)=π3         (2)=\dfrac{\pi}{2}(1-\dfrac{1}{3})=\dfrac{\pi}{2}(\dfrac{2}{3})=\dfrac{\pi}{3}~~~~~~~~~-(2)



Now integrate the third term-

R3zdxdy\int\int_R3zdxdy


Now Putting the value z=1x2y2z =\sqrt{1-x^2-y^2} and applying the same procedure as above-


=30101y21y2x2dxdy=3\int_0^1\int_0^{\sqrt{1-y^2}}\sqrt{1-y^2-x^2}dxdy


=301(x21y2x2+1y22sin1(x1y2)01y2)dy=3\int_0^1(\dfrac{x}{2}\sqrt{1-y^2-x^2}+\dfrac{1-y^2}{2}sin^{-1}(\dfrac{x}{\sqrt{1-y^2}})_0^{\sqrt{1-y^2}})dy


=301(1y22sin1(1y21y2)0)dy=3\int_0^1(\dfrac{1-y^2}{2}sin^{-1}(\dfrac{\sqrt{1-y^2}}{\sqrt{1-y^2}})-0)dy


=3011y22sin1(1)dy=3\int_0^1\dfrac{1-y^2}{2}sin^{-1}(1)dy


=3201(1y2)π2dy=\dfrac{3}{2}\int_0^1(1-y^2)\dfrac{\pi}{2}dy


=3π4(yy33)01=\dfrac{3\pi}{4}(y-\dfrac{y^3}{3})_0^1


=3π4(113)=3π4(23)=π2         (3)=\dfrac{3\pi}{4}(1-\dfrac{1}{3})=\dfrac{3\pi}{4}(\dfrac{2}{3})=\dfrac{\pi}{2}~~~~~~~~~-(3)



Adding the three equation we get-


xdxdy+2ydzdx+3zdxdy=13+π3+π2=5π6+13\int \int xdxdy+\int \int 2ydzdx+\int \int3zdxdy=\dfrac{1}{3}+\dfrac{\pi}{3}+\dfrac{\pi}{2}=\dfrac{5\pi}{6}+\dfrac{1}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS