Integrate (cbrte^sin(1/x))/(x^2 sec(1/x))
To solve:
"\\int\\dfrac{{\\sqrt[3]{\\mathrm{e}^{\\sin{(\\frac{1}{x})}}}}}{x^2\\sec(\\frac{1}{x})}dx"
We can re-write the above as:
"\\int \\dfrac{\\mathrm{e}^\\frac{\\sin\\left(\\frac{1}{x}\\right)}{3}}{\\sec\\left(\\frac{1}{x}\\right)x^2} dx \\quad = \\int \\dfrac{\\cos(\\frac{1}{x})\\mathrm{e}^\\frac{\\sin\\left(\\frac{1}{x}\\right)}{3}}{x^2} dx"
Substitute "u = \\dfrac{sin(\\frac{1}{x})}{3}"
"\\therefore \\quad \\dfrac{du}{dx}= \\dfrac{cos(\\frac{1}{x})}{3x^2} \\implies dx = -\\dfrac{3x^2}{cos(\\frac{1}{x})}du"
Since "u = \\dfrac{sin(\\frac{1}{x})}{3}" , then we have: "-3\\int \\mathrm{e}^u du = -3\\mathrm{e}^u \\implies -3\\mathrm{e}^\\frac{sin(\\frac{1}{x})}{3} \n+ C"
Comments
Leave a comment