Question #165128

Integrate (cbrte^sin(1/x))/(x^2 sec(1/x))


1
Expert's answer
2021-02-24T07:45:53-0500

To solve:


esin(1x)3x2sec(1x)dx\int\dfrac{{\sqrt[3]{\mathrm{e}^{\sin{(\frac{1}{x})}}}}}{x^2\sec(\frac{1}{x})}dx


We can re-write the above as:

esin(1x)3sec(1x)x2dx=cos(1x)esin(1x)3x2dx\int \dfrac{\mathrm{e}^\frac{\sin\left(\frac{1}{x}\right)}{3}}{\sec\left(\frac{1}{x}\right)x^2} dx \quad = \int \dfrac{\cos(\frac{1}{x})\mathrm{e}^\frac{\sin\left(\frac{1}{x}\right)}{3}}{x^2} dx


Substitute u=sin(1x)3u = \dfrac{sin(\frac{1}{x})}{3}


dudx=cos(1x)3x2    dx=3x2cos(1x)du\therefore \quad \dfrac{du}{dx}= \dfrac{cos(\frac{1}{x})}{3x^2} \implies dx = -\dfrac{3x^2}{cos(\frac{1}{x})}du


Since u=sin(1x)3u = \dfrac{sin(\frac{1}{x})}{3} , then we have: 3eudu=3eu    3esin(1x)3+C-3\int \mathrm{e}^u du = -3\mathrm{e}^u \implies -3\mathrm{e}^\frac{sin(\frac{1}{x})}{3} + C






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS