Question #164753

Discuss the maxima and minima of f(x,y)=x3y2(24 –x - y).


1
Expert's answer
2021-02-25T16:23:32-0500

f(x,y)=x3y2(24xy)=24x3y2x4y2x3y3f(x,y) = x^3y^2(24-x-y) = 24x^3y^2-x^4y^2-x^3y^3

necessary extremum condition:

Let M0(x0,y0)M_0(x_0, y_0) - extremum, then:

{fx(x0,y0)=0fy(x0,y0)=0\begin{cases} \cfrac{\partial f}{\partial x}(x_0,y_0) = 0\\\cfrac{\partial f}{\partial y}(x_0,y_0) = 0 \end{cases}


Find first partial derivatives:

fx=72x2y24x3y23x2y3fy={fx=72x2y24x3y23x2y3=0fy=48x3y2x4y3x3y2=0\cfrac{\partial f}{\partial x} = 72x^2y^2 - 4x^3y^2-3x^2y^3 \\ \cfrac{\partial f}{\partial y} = \\ \begin{cases} \cfrac{\partial f}{\partial x} = 72x^2y^2 - 4x^3y^2-3x^2y^3 = 0 \\ \cfrac{\partial f}{\partial y} = 48x^3y-2x^4y-3x^3y^2=0 \\ \end{cases} \\

Solve this system for x,yx,y:

{x2y2(724x3y)=0x2y(48x2x23y)=0{x2y2=0or4x3y+72=0x2y=0or2x2+48x3y=0\begin{cases} x^2y^2(72-4x-3y) = 0\\ x^2y(48x-2x^2-3y) = 0 \end{cases}\\ \begin{cases} x^2y^2 = 0 \,or\,-4x-3y+72 = 0\\ x^2y =0\, or\,-2x^2+48x-3y=0 \end{cases}

Find the roots of first line:

x2y2=0or4x3y+72=0x^2y^2 = 0 \,or\,-4x-3y+72 = 0

From second equation:

y=2443xy = 24 - \cfrac{4}{3}x

And put it in first equation:

24x43x2=04x2+72x=0x(4x+72)=0x=0  or  x=18y=24  or  y=024x-\cfrac{4}{3}x^2 = 0\\ -4x^2+72x=0\\ x(-4x+72) =0\\ x=0\;or \; x =18\\ y=24\; or\;y=0

M1(0;24),M2(18;0)M_1(0;24),M_2(18;0)

Find the roots of second line:

x2y=0or(48x2x23y)=0x^2y=0\, or\,(48x-2x^2-3y) = 0

From second equation:

y=23x2+16xy = -\cfrac{2}{3}x^2+16x

And put it in first equation:

x2(23x2+16x)=0x3(23x+16)=0x=0  or  x=24y=0  or  y=0M3(0;0),M4(24;0)x^2(-\cfrac{2}{3}x^2+16x)=0\\ x^3(-\cfrac{2}{3}x+16)= 0\\ x = 0\;or\; x =24\\ y=0\; or \;y=0\\ M_3(0;0), M_4(24;0)


{M1(0;24),M2(18;0)M3(0;0),M4(24;0)\begin{cases} M_1(0;24),M_2(18;0)\\ M_3(0;0), M_4(24;0) \end{cases}

The obtained points are the solution of two  aggregates of equations, but the necessary extremum condition says that the points must be a solution to the system. Therefore, the system has one solution - M3(0;0)M_3(0;0) . So we can check sufficient condition for extremum:

If 2fx2(x0;y0)=A,2fy2(x0;y0)=B,2fxy(x0;y0)=C\cfrac{\partial^2 f}{\partial x^2}(x_0;y_0) = A, \cfrac{\partial^2 f}{\partial y^2}(x_0;y_0) = B, \cfrac{\partial^2 f}{\partial x \partial y}(x_0;y_0) = C ,

then :

if ACB2>0andA>0(A<0),thenM(x0;y0)minimum(maximum)AC - B^2 > 0\, and\, A>0 \,(A<0), then\, M(x_0;y_0) - minimum (maximum)

If ACB2<0,thenM(x0;y0)isnt  extremumAC-B^2 < 0, then\, M(x_0;y_0) -isn't\; extremum

if ACB2=0,  thenwecantsayanything.AC-B^2 = 0, \; then \, we \,can't\, say \,anything.


2fx2=144xy212x2y26xy32fy2=48x32x46x3y2fxy=144x2y8x3y49x2y2\cfrac{\partial^2 f}{\partial x^2} = 144xy^2 -12x^2y^2-6xy^3\\ \cfrac{\partial^2 f}{\partial y^2} = 48x^3-2x^4-6x^3y\\ \cfrac{\partial^2 f}{\partial x \partial y} = 144x^2y - 8x^3y-49x^2y^2

A(0;0)=0  B(0;0)=0,  C(0;0)=0A(0;0) = 0\;B(0;0) = 0, \;C(0;0) = 0

ACB2=0AC-B^2 = 0, so the point M3(0;0)M_3(0;0) is not a minimum or maximum point.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS