Answer to Question #164173 in Calculus for Mary Rose Delos Santos

Question #164173

 (3x+1)dx / ((x+1)^12(3x-1)^12)


1
Expert's answer
2021-02-24T07:37:30-0500

Solution:

Let I=3x+1(x+1)12(3x1)12dxI=\int \dfrac{3x+1}{(x+1)^{12}(3x-1)^{12}}dx

=3x+1[(x+1)(3x1)]12dx=\int \dfrac{3x+1}{[(x+1)(3x-1)]^{12}}dx

=3x+1(3x2+2x1)12dx=\int \dfrac{3x+1}{(3x^2+2x-1)^{12}}dx ...(i)

Now put (3x2+2x1)=t(3x^2+2x-1)=t ...(ii)

On differentiating w.r.t. xx

6x+2=dtdx6x+2=\dfrac{dt}{dx}

(3x+1)dx=dt2\Rightarrow (3x+1)dx=\dfrac{dt}{2} ...(iii)

Putting (ii) and (iii) in (i), we get

I=1(t)12dt2I=\int \dfrac{1}{(t)^{12}}\dfrac{dt}{2}

=121t12dt=\dfrac{1}{2}\int \dfrac{1}{t^{12}}dt

=12t12dt=\dfrac{1}{2}\int {t^{-12}}dt

=12(t12+112+1)+C=\dfrac{1}{2}(\dfrac{t^{-12+1}}{{-12+1}})+C

=12(t1111)+C=\dfrac{1}{2}(\dfrac{t^{-11}}{{-11}})+C

=122t11+C=\dfrac{-1}{{22t^{11}}}+C

=122(3x2+2x1)11+C=\dfrac{-1}{{22(3x^2+2x-1)^{11}}}+C [Using (ii)]

Thus, our final answer is 122(3x2+2x1)11+C\dfrac{-1}{{22(3x^2+2x-1)^{11}}}+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment