(3x+1)dx / ((x+1)^12(3x-1)^12)
Solution:
Let "I=\\int \\dfrac{3x+1}{(x+1)^{12}(3x-1)^{12}}dx"
"=\\int \\dfrac{3x+1}{[(x+1)(3x-1)]^{12}}dx"
"=\\int \\dfrac{3x+1}{(3x^2+2x-1)^{12}}dx" ...(i)
Now put "(3x^2+2x-1)=t" ...(ii)
On differentiating w.r.t. "x"
"6x+2=\\dfrac{dt}{dx}"
"\\Rightarrow (3x+1)dx=\\dfrac{dt}{2}" ...(iii)
Putting (ii) and (iii) in (i), we get
"I=\\int \\dfrac{1}{(t)^{12}}\\dfrac{dt}{2}"
"=\\dfrac{1}{2}\\int \\dfrac{1}{t^{12}}dt"
"=\\dfrac{1}{2}\\int {t^{-12}}dt"
"=\\dfrac{1}{2}(\\dfrac{t^{-12+1}}{{-12+1}})+C"
"=\\dfrac{1}{2}(\\dfrac{t^{-11}}{{-11}})+C"
"=\\dfrac{-1}{{22t^{11}}}+C"
"=\\dfrac{-1}{{22(3x^2+2x-1)^{11}}}+C" [Using (ii)]
Thus, our final answer is "\\dfrac{-1}{{22(3x^2+2x-1)^{11}}}+C"
Comments
Leave a comment