Question #164148

 (3x+1)dx / ((x+1)^12(3x-1)^12)


1
Expert's answer
2021-02-24T12:40:27-0500

(3x+1)dx((x+1)12(3x1)12)\large\frac{(3x+1)dx}{((x+1)^{12}(3x-1)^{12})} Let's solve the problem f(x)dx is meaning of integral


(3x+1)dx((x+1)12(3x1)12)\int\large\frac{(3x+1)dx}{((x+1)^{12}(3x-1)^{12})}

Substitute u=(x+1)(3x1)dudxu = (x+1)(3x-1) \to \large\frac{du}{dx}=3(x+1)+(3x1)dx=du3(x+1)+3x1=3(x+1)+(3x-1) \to dx = \large\frac{du}{3(x+1)+3x-1}

dx=du2(3x+1)\to dx= \large\frac{du}{2(3x+1)}

12duu12\large\frac{1}{2}\int\frac{du}{u^{12}} (Apply power rule undu=un+1n+1)\to(Apply \space power \space rule \space \int u^ndu = \large\frac{u^{n+1}}{n+1})  with n = -12

                =12(111u11)= \large\frac{1}{2} * (\frac{-1}{11u^{11}}) =122u11=\large\frac{-1}{22u^{11}}

Undo substitution u=(x+1)(3x1)u = (x+1)(3x-1) 122(x+1)11(3x1)11\to \large\frac{-1}{22(x+1)^{11}(3x-1)^{11}}

3x+1(x+1)12(3x1)12dx=122(x+1)11(3x1)11+C\large\int\large\frac{3x+1}{(x+1)^{12}(3x-1)^{12}}dx = -\large\frac{1}{22(x+1)^{11}(3x-1)^{11}}+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS