((x+1)12(3x−1)12)(3x+1)dx Let's solve the problem f(x)dx is meaning of integral
∫((x+1)12(3x−1)12)(3x+1)dx
Substitute u=(x+1)(3x−1)→dxdu=3(x+1)+(3x−1)→dx=3(x+1)+3x−1du
→dx=2(3x+1)du
21∫u12du →(Apply power rule ∫undu=n+1un+1) with n = -12
=21∗(11u11−1) =22u11−1
Undo substitution u=(x+1)(3x−1) →22(x+1)11(3x−1)11−1
∫(x+1)12(3x−1)123x+1dx=−22(x+1)11(3x−1)111+C
Comments