(3x+1)dx / ((x+1)^12(3x-1)^12)
"\\large\\frac{(3x+1)dx}{((x+1)^{12}(3x-1)^{12})}" Let's solve the problem f(x)dx is meaning of integral
"\\int\\large\\frac{(3x+1)dx}{((x+1)^{12}(3x-1)^{12})}"
Substitute "u = (x+1)(3x-1) \\to \\large\\frac{du}{dx}""=3(x+1)+(3x-1) \\to dx = \\large\\frac{du}{3(x+1)+3x-1}"
"\\to dx= \\large\\frac{du}{2(3x+1)}"
"\\large\\frac{1}{2}\\int\\frac{du}{u^{12}}" "\\to(Apply \\space power \\space rule \\space \\int u^ndu = \\large\\frac{u^{n+1}}{n+1})" with n = -12
"= \\large\\frac{1}{2} * (\\frac{-1}{11u^{11}})" "=\\large\\frac{-1}{22u^{11}}"
Undo substitution "u = (x+1)(3x-1)" "\\to \\large\\frac{-1}{22(x+1)^{11}(3x-1)^{11}}"
"\\large\\int\\large\\frac{3x+1}{(x+1)^{12}(3x-1)^{12}}dx = -\\large\\frac{1}{22(x+1)^{11}(3x-1)^{11}}+C"
Comments
Leave a comment