Find the directional derivative of  at point  in the direction of vector. Where
 ,  and
F(x,y,z)=z-x/z+y, p (3,4,-5) and u= 2i+6j-k
find the partial derivatives:
"\\frac{{\\partial F}}{{\\partial x}} = \\frac{\\partial }{{\\partial x}}\\left( {z - \\frac{x}{z} + y} \\right) = - \\frac{1}{z} \\Rightarrow \\frac{{\\partial F}}{{\\partial x}}(P) = - \\frac{1}{{ - 5}} = \\frac{1}{5}"
"\\frac{{\\partial F}}{{\\partial y}} = \\frac{\\partial }{{\\partial y}}\\left( {z - \\frac{x}{z} + y} \\right) = 1 \\Rightarrow \\frac{{\\partial F}}{{\\partial y}}(P) = 1"
"\\frac{{\\partial F}}{{\\partial z}} = \\frac{\\partial }{{\\partial z}}\\left( {z - \\frac{x}{z} + y} \\right) = 1 + \\frac{x}{{{z^2}}} \\Rightarrow \\frac{{\\partial F}}{{\\partial z}}(P) = 1 + \\frac{3}{{{{( - 5)}^2}}} = \\frac{{28}}{{25}}"
find the vector module:
"|\\overline u | = \\sqrt {{2^2} + {6^2} + {{( - 1)}^2}} = \\sqrt {41}"
Then the direction cosines are
"\\cos \\alpha = \\frac{2}{{\\sqrt {41} }};\\,\\,\\cos \\beta = \\frac{6}{{\\sqrt {41} }};\\,\\,\\cos \\gamma = \\frac{{ - 1}}{{\\sqrt {41} }}"
from where
"\\frac{{dF}}{{du}} = \\frac{{\\partial F}}{{\\partial x}}(P)\\cos \\alpha + \\frac{{\\partial F}}{{\\partial y}}(P)\\cos \\beta + \\frac{{\\partial F}}{{\\partial z}}(P)\\cos \\gamma = \\frac{{\\frac{1}{5} \\cdot 2 + 1 \\cdot 6 - \\frac{{28}}{{25}} \\cdot 1}}{{\\sqrt {41} }} = \\frac{{132}}{{25\\sqrt {41} }}"
Answer: "\\frac{{132}}{{25\\sqrt {41} }}"
Comments
Leave a comment