find the partial derivatives:
∂x∂F=∂x∂(z−zx+y)=−z1⇒∂x∂F(P)=−−51=51
∂y∂F=∂y∂(z−zx+y)=1⇒∂y∂F(P)=1
∂z∂F=∂z∂(z−zx+y)=1+z2x⇒∂z∂F(P)=1+(−5)23=2528
find the vector module:
∣u∣=22+62+(−1)2=41
Then the direction cosines are
cosα=412;cosβ=416;cosγ=41−1
from where
dudF=∂x∂F(P)cosα+∂y∂F(P)cosβ+∂z∂F(P)cosγ=4151⋅2+1⋅6−2528⋅1=2541132
Answer: 2541132
Comments