find the partial derivatives:
∂ F ∂ x = ∂ ∂ x ( z − x z + y ) = − 1 z ⇒ ∂ F ∂ x ( P ) = − 1 − 5 = 1 5 \frac{{\partial F}}{{\partial x}} = \frac{\partial }{{\partial x}}\left( {z - \frac{x}{z} + y} \right) = - \frac{1}{z} \Rightarrow \frac{{\partial F}}{{\partial x}}(P) = - \frac{1}{{ - 5}} = \frac{1}{5} ∂ x ∂ F = ∂ x ∂ ( z − z x + y ) = − z 1 ⇒ ∂ x ∂ F ( P ) = − − 5 1 = 5 1
∂ F ∂ y = ∂ ∂ y ( z − x z + y ) = 1 ⇒ ∂ F ∂ y ( P ) = 1 \frac{{\partial F}}{{\partial y}} = \frac{\partial }{{\partial y}}\left( {z - \frac{x}{z} + y} \right) = 1 \Rightarrow \frac{{\partial F}}{{\partial y}}(P) = 1 ∂ y ∂ F = ∂ y ∂ ( z − z x + y ) = 1 ⇒ ∂ y ∂ F ( P ) = 1
∂ F ∂ z = ∂ ∂ z ( z − x z + y ) = 1 + x z 2 ⇒ ∂ F ∂ z ( P ) = 1 + 3 ( − 5 ) 2 = 28 25 \frac{{\partial F}}{{\partial z}} = \frac{\partial }{{\partial z}}\left( {z - \frac{x}{z} + y} \right) = 1 + \frac{x}{{{z^2}}} \Rightarrow \frac{{\partial F}}{{\partial z}}(P) = 1 + \frac{3}{{{{( - 5)}^2}}} = \frac{{28}}{{25}} ∂ z ∂ F = ∂ z ∂ ( z − z x + y ) = 1 + z 2 x ⇒ ∂ z ∂ F ( P ) = 1 + ( − 5 ) 2 3 = 25 28
find the vector module:
∣ u ‾ ∣ = 2 2 + 6 2 + ( − 1 ) 2 = 41 |\overline u | = \sqrt {{2^2} + {6^2} + {{( - 1)}^2}} = \sqrt {41} ∣ u ∣ = 2 2 + 6 2 + ( − 1 ) 2 = 41
Then the direction cosines are
cos α = 2 41 ; cos β = 6 41 ; cos γ = − 1 41 \cos \alpha = \frac{2}{{\sqrt {41} }};\,\,\cos \beta = \frac{6}{{\sqrt {41} }};\,\,\cos \gamma = \frac{{ - 1}}{{\sqrt {41} }} cos α = 41 2 ; cos β = 41 6 ; cos γ = 41 − 1
from where
d F d u = ∂ F ∂ x ( P ) cos α + ∂ F ∂ y ( P ) cos β + ∂ F ∂ z ( P ) cos γ = 1 5 ⋅ 2 + 1 ⋅ 6 − 28 25 ⋅ 1 41 = 132 25 41 \frac{{dF}}{{du}} = \frac{{\partial F}}{{\partial x}}(P)\cos \alpha + \frac{{\partial F}}{{\partial y}}(P)\cos \beta + \frac{{\partial F}}{{\partial z}}(P)\cos \gamma = \frac{{\frac{1}{5} \cdot 2 + 1 \cdot 6 - \frac{{28}}{{25}} \cdot 1}}{{\sqrt {41} }} = \frac{{132}}{{25\sqrt {41} }} d u d F = ∂ x ∂ F ( P ) cos α + ∂ y ∂ F ( P ) cos β + ∂ z ∂ F ( P ) cos γ = 41 5 1 ⋅ 2 + 1 ⋅ 6 − 25 28 ⋅ 1 = 25 41 132
Answer: 132 25 41 \frac{{132}}{{25\sqrt {41} }} 25 41 132
Comments