Directional derivative of function F(x,y,z)=z+yz−x along direction of vector u=2i+6j−k at the point P(3,4,−5) is
∂u∂F(P)= ∂x∂F(P)cosα+∂y∂F(P)cosβ+∂z∂F(P)cosγ ,
where
∂x∂F= ∂x∂(z+yz−x)= z+y1⋅∂x∂(z−x)= z+y1⋅(−1)= −z+y1 ,
∂x∂F(P)=−−5+41=−−11=1 ,
∂y∂F= ∂y∂(z+yz−x)= (z−x)⋅∂y∂(z+y1)= (z−x)⋅(−(z+y)21)=
−(z+y)2z−x ,
∂y∂F(P)=−(−5+4)2−5−3=−(−1)2−8=18=8 ,
∂z∂F= ∂z∂(z+yz−x)= (z+y)2(∂z∂(z−x))⋅(z+y)−(z−x)⋅∂z∂(z+y)=
(z+y)21⋅(z+y)−(z−x)⋅1= (z+y)2z+y−z+x=(z+y)2y+x ,
∂z∂F(P)= (−5+4)24+3=(−1)27=17=7 ,
∣u∣=22+62+(−1)2=4+36+1=41
cosα=412 , cosβ=416 , cosγ=−411 .
So,
∂u∂F(P)=1⋅412+8⋅416−7⋅411= 412+48−7=4143 .
Comments