Find the directional derivative of  at point  in the direction of vector. Where
 ,  and
F(x,y,z)=z-x/z+y, p (3,4,-5) and u= 2i+6j-k
Directional derivative of function "F(x,y,z)=\\dfrac{z-x}{z+y}" along direction of vector "\\bold{u}=2\\bold{i}+6\\bold{j}-\\bold{k}" at the point "P(3,4,-5)" is
"\\dfrac{\\partial F(P)}{\\partial\\bold{u}}=" "\\dfrac{\\partial F(P)}{\\partial x}\\cos\\alpha+\\dfrac{\\partial F(P)}{\\partial y}\\cos\\beta+\\dfrac{\\partial F(P)}{\\partial z}\\cos\\gamma" ,
where
"\\dfrac{\\partial F}{\\partial x}=" "\\dfrac{\\partial}{\\partial x}\\left(\\dfrac{z-x}{z+y}\\right)=" "\\dfrac{1}{z+y}\\cdot\\dfrac{\\partial}{\\partial x}\\left(z-x\\right)=" "\\dfrac{1}{z+y}\\cdot\\left(-1\\right)=" "-\\dfrac{1}{z+y}" ,
"\\dfrac{\\partial F(P)}{\\partial x}=-\\dfrac{1}{-5+4}=-\\dfrac{1}{-1}=1" ,
"\\dfrac{\\partial F}{\\partial y}=" "\\dfrac{\\partial}{\\partial y}\\left(\\dfrac{z-x}{z+y}\\right)=" "(z-x)\\cdot\\dfrac{\\partial}{\\partial y}\\left(\\dfrac{1}{z+y}\\right)=" "(z-x)\\cdot\\left(-\\dfrac{1}{(z+y)^2}\\right)="
"-\\dfrac{z-x}{(z+y)^2}" ,
"\\dfrac{\\partial F(P)}{\\partial y}=-\\dfrac{-5-3}{(-5+4)^2}=-\\dfrac{-8}{(-1)^2}=\\dfrac{8}{1}=8" ,
"\\dfrac{\\partial F}{\\partial z}=" "\\dfrac{\\partial}{\\partial z}\\left(\\dfrac{z-x}{z+y}\\right)=" "\\dfrac{\\left(\\dfrac{\\partial}{\\partial z}(z-x)\\right)\\cdot(z+y)-(z-x)\\cdot\\dfrac{\\partial}{\\partial z}(z+y)}{(z+y)^2}="
"\\dfrac{1\\cdot(z+y)-(z-x)\\cdot1}{(z+y)^2}=" "\\dfrac{z+y-z+x}{(z+y)^2}=\\dfrac{y+x}{(z+y)^2}" ,
"\\dfrac{\\partial F(P)}{\\partial z}=" "\\dfrac{4+3}{(-5+4)^2}=\\dfrac{7}{(-1)^2}=\\dfrac{7}{1}=7" ,
"|\\bold{u}|=\\sqrt{2^2+6^2+(-1)^2}=\\sqrt{4+36+1}=\\sqrt{41}"
"\\cos\\alpha=\\dfrac{2}{\\sqrt{41}}" , "\\cos\\beta=\\dfrac{6}{\\sqrt{41}}" , "\\cos\\gamma=-\\dfrac{1}{\\sqrt{41}}" .
So,
"\\dfrac{\\partial F(P)}{\\partial\\bold{u}}=1\\cdot\\dfrac{2}{\\sqrt{41}}+8\\cdot\\dfrac{6}{\\sqrt{41}}-7\\cdot\\dfrac{1}{\\sqrt{41}}=" "\\dfrac{2+48-7}{\\sqrt{41}}=\\dfrac{43}{\\sqrt{41}}" .
Comments
Leave a comment