Directional derivative of function F ( x , y , z ) = z − x z + y F(x,y,z)=\dfrac{z-x}{z+y} F ( x , y , z ) = z + y z − x along direction of vector u = 2 i + 6 j − k \bold{u}=2\bold{i}+6\bold{j}-\bold{k} u = 2 i + 6 j − k at the point P ( 3 , 4 , − 5 ) P(3,4,-5) P ( 3 , 4 , − 5 ) is
∂ F ( P ) ∂ u = \dfrac{\partial F(P)}{\partial\bold{u}}= ∂ u ∂ F ( P ) = ∂ F ( P ) ∂ x cos α + ∂ F ( P ) ∂ y cos β + ∂ F ( P ) ∂ z cos γ \dfrac{\partial F(P)}{\partial x}\cos\alpha+\dfrac{\partial F(P)}{\partial y}\cos\beta+\dfrac{\partial F(P)}{\partial z}\cos\gamma ∂ x ∂ F ( P ) cos α + ∂ y ∂ F ( P ) cos β + ∂ z ∂ F ( P ) cos γ ,
where
∂ F ∂ x = \dfrac{\partial F}{\partial x}= ∂ x ∂ F = ∂ ∂ x ( z − x z + y ) = \dfrac{\partial}{\partial x}\left(\dfrac{z-x}{z+y}\right)= ∂ x ∂ ( z + y z − x ) = 1 z + y ⋅ ∂ ∂ x ( z − x ) = \dfrac{1}{z+y}\cdot\dfrac{\partial}{\partial x}\left(z-x\right)= z + y 1 ⋅ ∂ x ∂ ( z − x ) = 1 z + y ⋅ ( − 1 ) = \dfrac{1}{z+y}\cdot\left(-1\right)= z + y 1 ⋅ ( − 1 ) = − 1 z + y -\dfrac{1}{z+y} − z + y 1 ,
∂ F ( P ) ∂ x = − 1 − 5 + 4 = − 1 − 1 = 1 \dfrac{\partial F(P)}{\partial x}=-\dfrac{1}{-5+4}=-\dfrac{1}{-1}=1 ∂ x ∂ F ( P ) = − − 5 + 4 1 = − − 1 1 = 1 ,
∂ F ∂ y = \dfrac{\partial F}{\partial y}= ∂ y ∂ F = ∂ ∂ y ( z − x z + y ) = \dfrac{\partial}{\partial y}\left(\dfrac{z-x}{z+y}\right)= ∂ y ∂ ( z + y z − x ) = ( z − x ) ⋅ ∂ ∂ y ( 1 z + y ) = (z-x)\cdot\dfrac{\partial}{\partial y}\left(\dfrac{1}{z+y}\right)= ( z − x ) ⋅ ∂ y ∂ ( z + y 1 ) = ( z − x ) ⋅ ( − 1 ( z + y ) 2 ) = (z-x)\cdot\left(-\dfrac{1}{(z+y)^2}\right)= ( z − x ) ⋅ ( − ( z + y ) 2 1 ) =
− z − x ( z + y ) 2 -\dfrac{z-x}{(z+y)^2} − ( z + y ) 2 z − x ,
∂ F ( P ) ∂ y = − − 5 − 3 ( − 5 + 4 ) 2 = − − 8 ( − 1 ) 2 = 8 1 = 8 \dfrac{\partial F(P)}{\partial y}=-\dfrac{-5-3}{(-5+4)^2}=-\dfrac{-8}{(-1)^2}=\dfrac{8}{1}=8 ∂ y ∂ F ( P ) = − ( − 5 + 4 ) 2 − 5 − 3 = − ( − 1 ) 2 − 8 = 1 8 = 8 ,
∂ F ∂ z = \dfrac{\partial F}{\partial z}= ∂ z ∂ F = ∂ ∂ z ( z − x z + y ) = \dfrac{\partial}{\partial z}\left(\dfrac{z-x}{z+y}\right)= ∂ z ∂ ( z + y z − x ) = ( ∂ ∂ z ( z − x ) ) ⋅ ( z + y ) − ( z − x ) ⋅ ∂ ∂ z ( z + y ) ( z + y ) 2 = \dfrac{\left(\dfrac{\partial}{\partial z}(z-x)\right)\cdot(z+y)-(z-x)\cdot\dfrac{\partial}{\partial z}(z+y)}{(z+y)^2}= ( z + y ) 2 ( ∂ z ∂ ( z − x ) ) ⋅ ( z + y ) − ( z − x ) ⋅ ∂ z ∂ ( z + y ) =
1 ⋅ ( z + y ) − ( z − x ) ⋅ 1 ( z + y ) 2 = \dfrac{1\cdot(z+y)-(z-x)\cdot1}{(z+y)^2}= ( z + y ) 2 1 ⋅ ( z + y ) − ( z − x ) ⋅ 1 = z + y − z + x ( z + y ) 2 = y + x ( z + y ) 2 \dfrac{z+y-z+x}{(z+y)^2}=\dfrac{y+x}{(z+y)^2} ( z + y ) 2 z + y − z + x = ( z + y ) 2 y + x ,
∂ F ( P ) ∂ z = \dfrac{\partial F(P)}{\partial z}= ∂ z ∂ F ( P ) = 4 + 3 ( − 5 + 4 ) 2 = 7 ( − 1 ) 2 = 7 1 = 7 \dfrac{4+3}{(-5+4)^2}=\dfrac{7}{(-1)^2}=\dfrac{7}{1}=7 ( − 5 + 4 ) 2 4 + 3 = ( − 1 ) 2 7 = 1 7 = 7 ,
∣ u ∣ = 2 2 + 6 2 + ( − 1 ) 2 = 4 + 36 + 1 = 41 |\bold{u}|=\sqrt{2^2+6^2+(-1)^2}=\sqrt{4+36+1}=\sqrt{41} ∣ u ∣ = 2 2 + 6 2 + ( − 1 ) 2 = 4 + 36 + 1 = 41
cos α = 2 41 \cos\alpha=\dfrac{2}{\sqrt{41}} cos α = 41 2 , cos β = 6 41 \cos\beta=\dfrac{6}{\sqrt{41}} cos β = 41 6 , cos γ = − 1 41 \cos\gamma=-\dfrac{1}{\sqrt{41}} cos γ = − 41 1 .
So,
∂ F ( P ) ∂ u = 1 ⋅ 2 41 + 8 ⋅ 6 41 − 7 ⋅ 1 41 = \dfrac{\partial F(P)}{\partial\bold{u}}=1\cdot\dfrac{2}{\sqrt{41}}+8\cdot\dfrac{6}{\sqrt{41}}-7\cdot\dfrac{1}{\sqrt{41}}= ∂ u ∂ F ( P ) = 1 ⋅ 41 2 + 8 ⋅ 41 6 − 7 ⋅ 41 1 = 2 + 48 − 7 41 = 43 41 \dfrac{2+48-7}{\sqrt{41}}=\dfrac{43}{\sqrt{41}} 41 2 + 48 − 7 = 41 43 .
Comments