Question #163599

Find the directional derivative of  at point  in the direction of vector. Where

 ,  and

F(x,y,z)=z-x/z+y, p (3,4,-5) and u= 2i+6j-k



1
Expert's answer
2021-02-28T17:08:15-0500

Directional derivative of function F(x,y,z)=zxz+yF(x,y,z)=\dfrac{z-x}{z+y} along direction of vector u=2i+6jk\bold{u}=2\bold{i}+6\bold{j}-\bold{k} at the point P(3,4,5)P(3,4,-5) is


F(P)u=\dfrac{\partial F(P)}{\partial\bold{u}}= F(P)xcosα+F(P)ycosβ+F(P)zcosγ\dfrac{\partial F(P)}{\partial x}\cos\alpha+\dfrac{\partial F(P)}{\partial y}\cos\beta+\dfrac{\partial F(P)}{\partial z}\cos\gamma ,


where

Fx=\dfrac{\partial F}{\partial x}= x(zxz+y)=\dfrac{\partial}{\partial x}\left(\dfrac{z-x}{z+y}\right)= 1z+yx(zx)=\dfrac{1}{z+y}\cdot\dfrac{\partial}{\partial x}\left(z-x\right)= 1z+y(1)=\dfrac{1}{z+y}\cdot\left(-1\right)= 1z+y-\dfrac{1}{z+y} ,


F(P)x=15+4=11=1\dfrac{\partial F(P)}{\partial x}=-\dfrac{1}{-5+4}=-\dfrac{1}{-1}=1 ,


Fy=\dfrac{\partial F}{\partial y}= y(zxz+y)=\dfrac{\partial}{\partial y}\left(\dfrac{z-x}{z+y}\right)= (zx)y(1z+y)=(z-x)\cdot\dfrac{\partial}{\partial y}\left(\dfrac{1}{z+y}\right)= (zx)(1(z+y)2)=(z-x)\cdot\left(-\dfrac{1}{(z+y)^2}\right)=


zx(z+y)2-\dfrac{z-x}{(z+y)^2} ,


F(P)y=53(5+4)2=8(1)2=81=8\dfrac{\partial F(P)}{\partial y}=-\dfrac{-5-3}{(-5+4)^2}=-\dfrac{-8}{(-1)^2}=\dfrac{8}{1}=8 ,


Fz=\dfrac{\partial F}{\partial z}= z(zxz+y)=\dfrac{\partial}{\partial z}\left(\dfrac{z-x}{z+y}\right)= (z(zx))(z+y)(zx)z(z+y)(z+y)2=\dfrac{\left(\dfrac{\partial}{\partial z}(z-x)\right)\cdot(z+y)-(z-x)\cdot\dfrac{\partial}{\partial z}(z+y)}{(z+y)^2}=


1(z+y)(zx)1(z+y)2=\dfrac{1\cdot(z+y)-(z-x)\cdot1}{(z+y)^2}= z+yz+x(z+y)2=y+x(z+y)2\dfrac{z+y-z+x}{(z+y)^2}=\dfrac{y+x}{(z+y)^2} ,


F(P)z=\dfrac{\partial F(P)}{\partial z}= 4+3(5+4)2=7(1)2=71=7\dfrac{4+3}{(-5+4)^2}=\dfrac{7}{(-1)^2}=\dfrac{7}{1}=7 ,


u=22+62+(1)2=4+36+1=41|\bold{u}|=\sqrt{2^2+6^2+(-1)^2}=\sqrt{4+36+1}=\sqrt{41}


cosα=241\cos\alpha=\dfrac{2}{\sqrt{41}} , cosβ=641\cos\beta=\dfrac{6}{\sqrt{41}} , cosγ=141\cos\gamma=-\dfrac{1}{\sqrt{41}} .


So,


F(P)u=1241+86417141=\dfrac{\partial F(P)}{\partial\bold{u}}=1\cdot\dfrac{2}{\sqrt{41}}+8\cdot\dfrac{6}{\sqrt{41}}-7\cdot\dfrac{1}{\sqrt{41}}= 2+48741=4341\dfrac{2+48-7}{\sqrt{41}}=\dfrac{43}{\sqrt{41}} .



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS