solve the diffrential equation x dy/dx + y = x^2y^6
"x\\frac{dy}{dx}+y=x^2y^6"
Solution:
Divide the left and right sides of the equation by "y^6" :
"\\frac{x}{y^6}\\frac{dy}{dx}+\\frac{1}{y^5}=x^2"
"\\frac{1}{y^5}=z" , "z'=-5\\frac{y'}{y^6}" , "\\frac{y'}{y^6}=-\\frac{z'}{5}" .
"-\\frac{xz'}{5}+z=x^2"
"xz'-5z=-5x^2"
"z=uv" , "z'=u'v+v'u"
"xu'v+xv'u-5uv=-5x^2"
"xu'v+u(xv'-5v)=-5x^2"
Let's compose and solve the system:
"\\begin{cases}\n xv'-5v=0 \\\\\n xu'v=-5x^2\n\\end{cases}"
From the first equation:
"\\frac{dv}{v}=\\frac{5dx}{x}"
"\\ln|v|=5\\ln{|x|}"
"v=x^5"
Substitute "v" into the second equation:
"xu'x^5=-5x^2"
"du=-5x^{-4}dx"
"u=\\frac53x^{-3}+C"
"z=uv=x^5(\\frac53x^{-3}+C)=\\frac53x^2+Cx^5"
"\\frac{1}{y^5}=\\frac53x^2+Cx^5"
Answer: "\\frac{1}{y^5}=\\frac53x^2+Cx^5" .
Comments
Leave a comment