xdxdy+y=x2y6
Solution:
Divide the left and right sides of the equation by y6 :
y6xdxdy+y51=x2
y51=z , z′=−5y6y′ , y6y′=−5z′ .
−5xz′+z=x2
xz′−5z=−5x2
z=uv , z′=u′v+v′u
xu′v+xv′u−5uv=−5x2
xu′v+u(xv′−5v)=−5x2
Let's compose and solve the system:
{xv′−5v=0xu′v=−5x2
From the first equation:
vdv=x5dx
ln∣v∣=5ln∣x∣
v=x5
Substitute v into the second equation:
xu′x5=−5x2
du=−5x−4dx
u=35x−3+C
z=uv=x5(35x−3+C)=35x2+Cx5
y51=35x2+Cx5
Answer: y51=35x2+Cx5 .
Comments