Question #163425

solve the diffrential equation x dy/dx + y = x^2y^6


1
Expert's answer
2021-02-24T06:50:32-0500

xdydx+y=x2y6x\frac{dy}{dx}+y=x^2y^6

Solution:

Divide the left and right sides of the equation by y6y^6 :

xy6dydx+1y5=x2\frac{x}{y^6}\frac{dy}{dx}+\frac{1}{y^5}=x^2

1y5=z\frac{1}{y^5}=z , z=5yy6z'=-5\frac{y'}{y^6} , yy6=z5\frac{y'}{y^6}=-\frac{z'}{5} .

xz5+z=x2-\frac{xz'}{5}+z=x^2

xz5z=5x2xz'-5z=-5x^2

z=uvz=uv , z=uv+vuz'=u'v+v'u

xuv+xvu5uv=5x2xu'v+xv'u-5uv=-5x^2

xuv+u(xv5v)=5x2xu'v+u(xv'-5v)=-5x^2

Let's compose and solve the system:

{xv5v=0xuv=5x2\begin{cases} xv'-5v=0 \\ xu'v=-5x^2 \end{cases}

From the first equation:

dvv=5dxx\frac{dv}{v}=\frac{5dx}{x}

lnv=5lnx\ln|v|=5\ln{|x|}

v=x5v=x^5

Substitute vv into the second equation:

xux5=5x2xu'x^5=-5x^2

du=5x4dxdu=-5x^{-4}dx

u=53x3+Cu=\frac53x^{-3}+C

z=uv=x5(53x3+C)=53x2+Cx5z=uv=x^5(\frac53x^{-3}+C)=\frac53x^2+Cx^5

1y5=53x2+Cx5\frac{1}{y^5}=\frac53x^2+Cx^5

Answer: 1y5=53x2+Cx5\frac{1}{y^5}=\frac53x^2+Cx^5 .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS