Question #162925

Explain if the limit of the function f(t) exist at t=1 where,

F(t)={ t2+5 if t<1} 

 {3-3t if t>1}



1
Expert's answer
2021-02-24T07:14:59-0500

The limit of f(t)f(t) at t=1t=1 exists if the one-sided limits exist at t=1t=1 , and are equal.

For given function

f(t)={t2+5,t<1,33t,t>1f(t)=\left\{\begin{array}{ll}t^2+5,&t<1,\\ 3-3t,&t>1\end{array}\right.

the left-hand limit equals

limt1f(t)=limt1(t2+5)=12+5=1+5=6\displaystyle\lim\limits_{t\to1^-}f(t)= \lim\limits_{t\to1}(t^2+5)=1^2+5=1+5=6,

the right-hand limit equals

limt1+f(t)=limt1(33t)=331=33=0\displaystyle\lim\limits_{t\to1^+}f(t)= \lim\limits_{t\to1}(3-3t)=3-3\cdot1=3-3=0.

So, the one-sided limits of given function exist at t=1t=1 , but are unequal

limt1f(t)limt1+f(t)\displaystyle\lim\limits_{t\to1^-}f(t)\neq\lim\limits_{t\to1^+}f(t).

Hence, the limit of the function at t=1t=1 does not exist. 



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS