Explain if the limit of the function f(t) exist at t=1 where,
F(t)={ t2+5 if t<1}
{3-3t if t>1}
The limit of "f(t)" at "t=1" exists if the one-sided limits exist at "t=1" , and are equal.
For given function
"f(t)=\\left\\{\\begin{array}{ll}t^2+5,&t<1,\\\\\n3-3t,&t>1\\end{array}\\right."
the left-hand limit equals
"\\displaystyle\\lim\\limits_{t\\to1^-}f(t)=\n\\lim\\limits_{t\\to1}(t^2+5)=1^2+5=1+5=6",
the right-hand limit equals
"\\displaystyle\\lim\\limits_{t\\to1^+}f(t)=\n\\lim\\limits_{t\\to1}(3-3t)=3-3\\cdot1=3-3=0".
So, the one-sided limits of given function exist at "t=1" , but are unequal
"\\displaystyle\\lim\\limits_{t\\to1^-}f(t)\\neq\\lim\\limits_{t\\to1^+}f(t)".
Hence, the limit of the function at "t=1" does not exist.
Comments
Leave a comment