Question #162841

Sec²(A/2)= 2-2 cos A/ sin² A


1
Expert's answer
2021-02-24T07:25:31-0500

Use the trigonometric identity 1cosθ=2sin2θ1-cos\theta=2sin^2\theta to write the numerator as,


22cosA=2(1cosA)=4sin2(A2)2-2cosA=2(1-cosA)=4sin^2(\frac{A}{2})


Use trigonometric identity sinθ=2sin(θ2)cos(θ2)sin\theta=2sin({\frac{\theta}{2})}cos({\frac{\theta}{2})} to write the denominator as,


sinA=2sin(A2)cos(A2)sinA=2sin({\frac{A}{2})}cos({\frac{A}{2})}


From Right-Hand side,


22cosAsin2A=4sin2(A2)(2sinA2cosA2)2\frac{2-2cosA}{sin^2A}=\frac{4sin^2(\frac{A}{2})}{(2sin\frac{A}{2}cos\frac{A}{2})^2}


=4sin2(A2)4sin2A2cos2A2=\frac{4sin^2(\frac{A}{2})}{4sin^2\frac{A}{2}cos^2\frac{A}{2}}


The common term 4sin2(A2)4sin^2(\frac{A}{2}) is cancel out from numerator and denominator.


=1cos2(A2)=\frac{1}{cos^2(\frac{A}{2})}


=sec2(A2)==sec^2(\frac{A}{2})= Left-Hand side


Therefore, 22cosAsin2A=\frac{2-2cosA}{sin^2A}= sec2(A2)sec^2(\frac{A}{2}) , hence proved.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS