Suppose {an} ∞ n=1 be a sequence of positive real numbers and 0 < x < 1. If an+1 < x · an for every n ∈ N, prove that limn→∞ an = 0.
First of all,
By applying the inequality multiple times
we find that "a_n < x^na_0, \\forall n \\in \\mathbb{N}" (as "a_n < x a_{n-1}<x^2a_{n-2}<...<x^n a_0").
Now as "a_n \\geq 0, \\forall n\\in \\mathbb{N}", and for any "a_0 \\in \\mathbb{R}^+", "a_0x^n \\underset{n\\to\\infty}{\\to}0", as "0<x<1",
We see that "0 \\leq a_n \\leq a_0 x^n", the right sequence converges to zero and thus we can conclude
that "a_n \\underset{n\\to\\infty}{\\to} 0" as it is bounded by two sequences both converging to zero.
Comments
Leave a comment